三步部署阿里通义万相视频生成大模型【万相开源、喜大普奔】

        阿里巴巴于2025年2月25日晚宣布全面开源其视频生成大模型通义万相2.1(Wan),这一举措标志着中国AI开源生态的又一重大突破。

        通义万相的开源不仅加速了AI技术在视频创作、文化传播等领域的落地,也引发了关于AI生成内容伦理与质量的讨论。随着技术迭代,其应用可能扩展至实时内容生成、个性化创作等方向,进一步推动人机协作的边界。

        开发者可通过GitHub、Hugging Face、魔搭社区下载模型,体验这一“最懂中国风”的视频生成技术

本次通过github下载安装。

安装

项目地址:

https://github.com/Wan-Video/Wan2.1

1.克隆仓库:

git clone https://github.com/Wan-Video/Wan2.1.git
cd Wan2.1

2.安装依赖项:

# Ensure torch >= 2.4.0
pip install -r requirements.txt

3.使用 huggingface-cli 下载模型:

pip install "huggingface_hub[cli]"
huggingface-cli download Wan-AI/Wan2.1-T2V-14B --local-dir ./Wan2.1-T2V
### 阿里通义万相2.1 版本特性 阿里云于2025年2月25日深夜宣布开源频生模型通义万相2.1,此版本提供了两个主要参数规模的选择:文生视频-1.3B和文生视频-14B。这两个版本旨在满足不同的应用场景和技术需求[^1]。 #### 文生视频-1.3B 和 文生视频-14B 的特点 - **文生视频-1.3B**:适合资源有限但希望尝试高质量视频生成的个人开发者或小型团队。 - **文生视频-14B**:针对更复杂、更高精度的任务设计,适用于专业级应用开发以及研究机构。 ### 使用说明 为了方便全球范围内的开发者获取并利用这些先进的技术成果,官方已开放多个平台供下载: - GitHub - Hugging Face - 魔搭社区 用户可以根据自己的偏好选择合适的渠道来访问源码及关文档资料。 对于想要深入了解如何操作该工具的人来说,建议前往[通义万相官方网站](https://wanxiang.aliyun.com/)进行注册申请账号,并查阅详细的API接口指南和其他支持材料[^2]。 ### 更新内容 此次发布的通义万相2.1不仅实现了完全开源共享,在性能优化方面也取得了显著进步,具体表现在以下几个方面: - 提升了图像到视频转换的质量; - 增强了自然语言处理能力,使得描述文字能够更加精准地映射成视觉效果; - 改进了多模态融合机制,从而更好地理解输入数据之间的关联性; 此外,还修复了一些之前存在的Bug,并增加了新的功能模块以扩展系统的适用性和灵活性。 ```python import torch from transformers import AutoModelForVideoGeneration, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("path_to_model") # 替换为实际路径 model = AutoModelForVideoGeneration.from_pretrained("path_to_model") text_input = tokenizer("A beautiful sunset over the ocean", return_tensors="pt") video_output = model.generate(**text_input) print(video_output.shape) # 输出生成视频张量小 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值