在实际深度学习项目场景中,如果选用云GPU服务器,价格还是挺贵的,以英伟达Tesla T4显卡,8核CPU,32GB内存的配置为例,华为云是每月3500元左右:
腾讯云是每月2500元左右:
阿里云结合优惠活动,每月是2000元左右:
云GPU服务器,在这么贵的情况下,我选择了自购显卡,自己维护GPU服务器来进行深度学习训练和推理等工作。
今天甜梨给大家介绍一下我调研对比多款显卡和使用的情况。
首选说一下这三个云服务器中的T4显卡:
这款Tesla T4显卡是英伟达在2018年发布的,是一款专门为AI训练推理设计的显卡,16GB显存,320个Tensor Core,2560个CUDA核心,功率仅为70W,支持ECC,没有视频输出接口,只能用虚拟桌面,没有散热风扇,是被动式散热,支持vGPU(使用vGPU软件需要付费,一般场景用不到)。工包价格5000元左右。
然后是3080Ti显卡:
英伟达Ge Force 3080Ti 显卡,配置12GB显存,320个tensor core,10240个cuda核心,没有ECC,350W功耗,涡轮主动式散热,不支持vGPU,工包价格5000元左右。是消费发烧级显卡,主要用于游戏等娱乐领域,我在使用这个显卡用于深度学习场景的时候,模型训练速度确实很快,但是在没有任何任务时候功耗会到90多瓦,由于功耗大,所以会有一定程度的噪音。总体上说这款显卡应用在深度学习领域有挺好的表现。
最后是A4500显卡:
英伟达RTX A4500 是专业级卡, 配备20GB显存,224个Tensor Core,7168个CUDA核心,功率200W,是主动式散热,支持ECC,有NVLink,不支持vGPU。工包价格8000元左右。我的服务器配备了这款显卡,在模型训练速度上跟3080Ti不相上下,但是在没有任务情况下功耗只有10瓦,显卡运行稳定,噪音较小,服务器放在家里或者办公室,显卡噪音很小,噪音影响可以忽略不计。
综合看,只用在AI,T4是最好选择,深度学习训练推理、游戏、图形设计、科学计算等多方面兼顾,预算9000元以内,A4500是最好的选择,比购买云GPU服务器自主性、灵活性好很多,性价比也高很多。
本文原创,不可以copy发布,我是“程序员甜梨”,感谢关注、收藏、点赞!