收藏关注不迷路!!
🌟文末获取源码+数据库🌟
感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
程序资料获取
🌟文末获取资料🌟
一、项目技术
开发语言:Python
python框架:Django
软件版本:python3.7/python3.8
数据库:mysql 5.7或更高版本
数据库工具:Navicat11
开发软件:PyCharm/vs code
前端框架:vue.js
二、项目内容和项目介绍
🎈1.项目内容
基于Python的大众点评数据爬取、分析及推荐系统是一个复杂但有趣的项目。下面将分别介绍这三个部分。
一、大众点评数据爬取
大众点评的数据爬取可以通过Python的requests库发送请求,并使用BeautifulSoup或lxml库来解析网页。以下是一个基本的爬取流程:
确定目标:确定需要爬取的数据,如商家的名称、评分、地址、价格等。
安装库:使用pip安装所需的库,如requests、BeautifulSoup4等。
发送请求:使用requests库发送HTTP请求,获取网页内容。
解析网页:使用BeautifulSoup或lxml解析网页内容,提取所需数据。
存储数据:将提取的数据存储到CSV文件、数据库或其他存储介质中。
在实际操作中,需要注意大众点评的反爬虫机制。过于频繁的请求可能会导致IP被封锁。因此,可以通过设置请求头、使用代理IP、添加延时等方式来规避这个问题。
🎈2.项目介绍
二、数据分析
数据分析部分可以使用Python的pandas库来处理数据。以下是一些基本的数据分析步骤:
读取数据:使用pandas读取存储的数据,如CSV文件。
数据清洗:处理缺失值、重复值等,确保数据的准确性和一致性。
数据探索:使用统计方法、可视化工具等探索数据的分布、特征等。
数据分析:根据业务需求进行数据分析,如计算平均评分、统计各区域的商家数量等。
三、推荐系统
推荐系统是机器学习的一个应用,它可以根据用户的历史行为、偏好等信息来推荐相关的产品或服务。以下是一个基于协同过滤的推荐系统实现步骤:
导入必要的库:如pandas、numpy、sklearn等。
加载数据:加载用户-物品评分矩阵等数据。
预处理数据:如填充缺失值、归一化等。
计算相似度:使用余弦相似度、皮尔逊相关系数等方法计算用户或物品之间的相似度。
生成推荐:根据相似度矩阵和用户的历史行为生成推荐列表。
在实际应用中,还可以结合内容过滤、上下文过滤等方法来提高推荐的准确性和多样性。此外,深度学习技术也被广泛应用于推荐系统中,如使用神经网络来提取用户和物品的特征,进而进行推荐。
综上所述,基于Python的大众点评数据爬取、分析及推荐系统是一个综合性的项目,它涉及了网页爬虫、数据分析和机器学习等多个领域的知识。通过这个项目,可以深入了解这些领域的基本原理和实现方法,并提升自己的实践能力和解决问题的能力。
三、核心代码
部分代码:
def config_page(request):
'''
获取参数信息
:return:
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code,
"data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
req_dict = request.session.get('req_dict')
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = config.page(config, config, req_dict)
return JsonResponse(msg)
def config_list(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code,
"data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
req_dict = request.session.get("req_dict")
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = config.page(config, config, req_dict)
return JsonResponse(msg)
def config_info(request, id_):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
data = config.getbyid(config, config, int(id_))
if len(data) > 0:
msg['data'] = data[0]
return JsonResponse(msg)
def config_detail(request, id_):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
data = config.getbyid(config, config, int(id_))
if len(data) > 0:
msg['data'] = data[0]
return JsonResponse(msg)
def config_save(request):
'''
创建参数信息
:return:
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
req_dict = request.session.get('req_dict')
param1 = config.getbyparams(config, config, req_dict)
if param1:
msg['code'] = id_exist_code
msg['msg'] = mes.id_exist_code
return JsonResponse(msg)
error = config.createbyreq(config, config, req_dict)
logging.warning("save_config.res=========>{}".format(error))
if error != None:
msg['code'] = crud_error_code
msg['msg'] = error
return JsonResponse(msg)
def config_add(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
req_dict = request.session.get("req_dict")
error = config.createbyreq(config, config, req_dict)
if error != None:
msg['code'] = crud_error_code
msg['msg'] = error
return JsonResponse(msg)
def config_update(request):
'''
更新参数信息
:return:
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
req_dict = request.session.get('req_dict')
config.updatebyparams(config, config, req_dict)
return JsonResponse(msg)
四、效果图
五 、资料获取
文章下方名片联系我即可~
精彩专栏推荐订阅:在下方专栏👇🏻
毕业设计精品实战案例
收藏关注不迷路!!
🌟文末获取设计🌟