论文记录:Visualizing and Understanding the Effectiveness of BERT

BERT pre-training and fine-tune 与 train from scratch的对比

结论

  • Pre-training Gets a Good Initial Point Across Downstream Tasks

    1. Pre-training Leads to Wider Optima
    2. Pre-training Eases Optimization on Downstream Tasks
    3. Pre-training-then-fine-tuning is Robust to Overfitting
  • Pre-training Helps to Generalize Better

    1. Wide and Flat Optima Lead to Better Generalization
    2. Consistency Between Training Loss Surface and Generalization Error Surface
  • Lower Layers of BERT are More Invariant and Transferable

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值