基础的概率公式推导-几何分布(离开学校太多年,温习一下)

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Black-Scholes模型是用于计算欧式期权价格的经典模型,其基本思想是在没有风险套利的情况下,基础资产的价格遵循几何布朗运动。下面是Black-Scholes模型的定价公式推导过程: 1. 基础假设:假设股票价格的变化满足几何布朗运动,即: $$dS = \mu S dt + \sigma S dz$$ 其中,$S$ 是股票价格,$\mu$ 是股票价格的平均收益率,$\sigma$ 是股票价格的波动率,$dz$ 是标准布朗运动,满足$dz \sim N(0,dt)$。 2. 定义期权价值:假设欧式期权到期时间为$T$,行权价格为$K$,则在时间$t$时,欧式看涨期权的价值为: $$C(t) = max(S(t) - K, 0)$$ 欧式看跌期权的价值为: $$P(t) = max(K - S(t), 0)$$ 3. 应用伊藤引理:根据伊藤引理,可以得到: $$dC = (\mu S \frac{\partial C}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2})dt + \sigma S \frac{\partial C}{\partial S}dz$$ $$dP = (\mu S \frac{\partial P}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 P}{\partial S^2})dt + \sigma S \frac{\partial P}{\partial S}dz$$ 4. 构造组合:构造一个包含欧式看涨期权和股票的投资组合,其价值为: $$X = C - \frac{S}{e^{r(T-t)}}$$ 其中,$r$ 是无风险利率,$e^{r(T-t)}$ 是当前时间$t$到到期时间$T$的连续复利计息因子。 5. 计算组合价值的变化:根据伊藤引理和组合的定义,可以得到: $$dX = dC - \frac{1}{e^{r(T-t)}}dS$$ $$= (\mu S \frac{\partial C}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} + rC)dt + \sigma S \frac{\partial C}{\partial S}dz - \frac{1}{e^{r(T-t)}}(\mu S dt + \sigma S dz)$$ $$= (\mu - r)Xdt + \sigma Xdz$$ 6. 应用Ito引理的逆向思路,得到组合的价值为: $$X(t) = e^{-r(T-t)}[C(t) - \Phi(d_1)S(t)]$$ 其中,$\Phi$ 是标准正态分布函数,$d_1$ 是: $$d_1 = \frac{ln(\frac{S(t)}{K}) + (r+\frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{T-t}}$$ 7. 根据无套利原理,组合的价值等于期权的价值,即: $$C(t) = \Phi(d_1)S(t) - \Phi(d_2)Ke^{-r(T-t)}$$ $$P(t) = \Phi(-d_2)Ke^{-r(T-t)} - \Phi(-d_1)S(t)$$ 其中, $$d_2 = d_1 - \sigma\sqrt{T-t}$$ 这就是Black-Scholes模型的定价公式

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值