You are given an array a of length n and array b of length m both consisting of only integers 0 and 1. Consider a matrix c of size n×m formed by following rule: ci,j=ai⋅bj (i.e. ai multiplied by bj). It’s easy to see that c consists of only zeroes and ones too.
How many subrectangles of size (area) k consisting only of ones are there in c?
A subrectangle is an intersection of a consecutive (subsequent) segment of rows and a consecutive (subsequent) segment of columns. I.e. consider four integers x1,x2,y1,y2 (1≤x1≤x2≤n, 1≤y1≤y2≤m) a subrectangle c[x1…x2][y1…y2] is an intersection of the rows x1,x1+1,x1+2,…,x2 and the columns y1,y1+1,y1+2,…,y2.
The size (area) of a subrectangle is the total number of cells in it.
Input
The first line contains three integers n, m and k (1≤n,m≤40000,1≤k≤n⋅m), length of array a, length of array b and required size of subrectangles.
The second line contains n integers a1,a2,…,an (0≤ai≤1), elements of a.
The third line contains m integers b1,b2,…,bm (0≤bi≤1), elements of b.
Output
Output single integer — the number of subrectangles of c with size (area) k consisting only of ones.
Examples
Input
3 3 2
1 0 1
1 1 1
Output
4
Input
3 5 4
1 1 1
1 1 1 1 1
Output
14
//枚举就好
#pragma warning(disable:4996)
#include"iostream"
#include"functional"
#include"algorithm"
#include"cstring"
#include"stack"
#include"cmath"
#include"queue"
#include"vector"
#include"map"
typedef long long int ll;
using namespace std;
pair<ll, ll> y[80000];
int cnt = 0, a, b, c;
map<ll, ll> ak, ac;
map<ll, ll>::iterator it, iy;
void get_c() {
for (int i = 1; i <= sqrt(c); i++) {
if (c % i == 0) {
y[cnt].first = i;
y[cnt++].second = c / i;
if (i != c / i) {
y[cnt].first = c / i;
y[cnt++].second = i;
}
}
}
}
int main() {
scanf("%lld%lld%lld", &a, &b, &c);
get_c();
ll l = 0, ans = 0, p = 0;
for (int i = 0; i < a; i++) {
scanf("%lld", &p);
if (p) {
l++;
}
else {
ak[l]++;
l = 0;
}
}
if (l != 0) {
ak[l]++;
l = 0;
}
for (int i = 0; i < b; i++) {
scanf("%lld", &p);
if (p) {
l++;
}
else {
ac[l]++;
l = 0;
}
}
if (l != 0) {
ac[l]++;
l = 0;
}
for (int i = 0; i < cnt; i++) {
ll hi = 0, li = 0;
for ( it = ak.begin(); it != ak.end(); it++) {
if ((*it).first >= y[i].first) {
hi += ((*it).first - y[i].first + 1)* (*it).second;
}
}
for (iy = ac.begin(); iy != ac.end(); iy++) {
if ((*iy).first >= y[i].second) {
li += ((*iy).first - y[i].second + 1) * (*iy).second;
}
}
ans += li * hi;
}
cout << ans;
}