Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
Input
The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
Output
For each test cases, you should output the maximum flow from source 1 to sink N.
Sample Input
2
3 2
1 2 1
2 3 1
3 3
1 2 1
2 3 1
1 3 1
Sample Output
Case 1: 1
Case 2: 2
//maxn 少开4个0 200ms
//ll 换成 int 200ms
//cin 换成 scanf 200ms
#pragma warning(disable:4996)
#include"iostream"
#include"functional"
#include"algorithm"
#include"string"
#include"string.h"
#include"stack"
#include"cmath"
#include"queue"
#include"vector"
#include"map"
using namespace std;
const int inf = 1e9;
const int maxn = 3500;
typedef struct node {
int to, w, nex;
}node;
int head[maxn], dis[maxn];
node g[maxn];
int cnt;
void innit() {
cnt = -1;
memset(head, -1, sizeof(head));
memset(g, 0, sizeof(g));
}
void add(int a, int b, int c) {
cnt++;
g[cnt].to = b;
g[cnt].w = c;
g[cnt].nex = head[a];
head[a] = cnt;
}
bool bfs(int st, int ed) {
queue<int> s;
memset(dis, -1, sizeof(dis));
dis[st] = 0;
s.push(st);
while (!s.empty()) {
int k = s.front();
s.pop();
for (int i = head[k]; i != -1; i = g[i].nex) {
int to = g[i].to;
if (dis[to] == -1 && g[i].w) {
dis[to] = dis[k] + 1;
s.push(to);
}
}
}
return dis[ed] != -1;
}
int dfs(int st, int ed, int maxflow) {
if (st == ed) return maxflow;
int ans = 0;
for (int i = head[st]; i != -1; i = g[i].nex) {
int to = g[i].to;
if (dis[to] == dis[st] + 1 && ans < maxflow) {
int p = 0;
if (p = dfs(to, ed, min(maxflow-ans,g[i].w))) {
ans += p;
g[i].w -= p;
g[i ^ 1].w += p;
}
}
}
return ans;
}
int Dinic(int st, int ed) {
int ans = 0;
while (bfs(st, ed)) {
ans += dfs(st, ed, inf);
}
return ans;
}
int main() {
int a;
scanf("%d", &a);
for (int i = 1; i <= a; i++) {
innit();
int to, cnt;
scanf("%d%d", &to, &cnt);
for (int j = 0; j < cnt; j++) {
int u, v, t;
scanf("%d%d%d", &u, &v, &t);
add(u, v, t);
add(v, u, 0);
}
printf("Case %d: %d\n", i, Dinic(1, to));
}
}