5.HBase_应用_MapReduce

使用MapReduce操作HBase表数据,比如实现HBase数据迁移,从一个表抽取数据导入另一个表。

1.首先,我们新建maven项目,并导入hbase相应的依赖包

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
	<modelVersion>4.0.0</modelVersion>
	<groupId>cn.lv</groupId>
	<artifactId>hbase-study</artifactId>
	<version>0.0.1-SNAPSHOT</version>

	<properties>
	  <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
	</properties>

	<dependencies>
	  <dependency>
		<groupId>org.apache.hbase</groupId>
		<artifactId>hbase-client</artifactId>
		<version>1.1.2</version>
		<scope>provided</scope>
	  </dependency>
	  <dependency>
		<groupId>org.apache.hadoop</groupId>
		<artifactId>hadoop-client</artifactId>
		<version>2.7.4</version>
		<scope>provided</scope>
	  </dependency>
	  <dependency>
		<groupId>org.apache.hbase</groupId>
		<artifactId>hbase-server</artifactId>
		<version>1.1.2</version>
		<scope>provided</scope>
	  </dependency>
	  <dependency>
		<groupId>jdk.tools</groupId>
		<artifactId>jdk.tools</artifactId>
		<version>1.7</version>
		<scope>system</scope>
		<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
	  </dependency>
	</dependencies>
	<build>
	  <finalName>hbase-study</finalName>
      <plugins>
		<plugin>
			<artifactId>maven-assembly-plugin</artifactId>
			<configuration>
			    <archive><manifest>
			      <mainClass>cn.lv.mr.Emp2BasicMapReduce</mainClass>
			    </manifest>
			  </archive>
			  <descriptorRefs>
				<descriptorRef>jar-with-dependencies</descriptorRef>
			  </descriptorRefs>
			</configuration>
			<executions>
			  <execution>
				<id>make-assembly</id>
				<phase>package</phase>
				<goals>
				  <goal>assembly</goal>
				</goals>
			  </execution>
			</executions>
		</plugin>
		<plugin>
		  <artifactId>maven-compiler-plugin</artifactId>
			<version>2.3.2</version>
			<configuration>
			  <source>1.7</source>
			  <target>1.7</target>
			  <encoding>UTF-8</encoding>
			</configuration>
		</plugin>
	  </plugins>
	</build>
</project>

2.编写代码,从hbase中emp表抽取数据导入basic表中

package cn.lv.mr;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;

/**
 * HBase表导数据:from emp table to basic table
 * 
 * @author lw
 *
 */
public class Emp2BasicMapReduce {

	// Mapper
	// emp,info,{name='zhangsan'}
	// emp,info,{age='22'}
	public static class ReadEmp2BasicMapper extends TableMapper<Text, Put> {
		public Text outputKey = new Text();

		@Override
		protected void map(ImmutableBytesWritable key, Result value, Context context)
				throws IOException, InterruptedException {
			// row key
			String rowKey = Bytes.toString(key.get());
			outputKey.set(rowKey);

			// outputValue
			Put put = new Put(key.get());
			// Iterator
			for (Cell cell : value.rawCells()) {
				// add family : info
				if ("info".equals(Bytes.toString(CellUtil.cloneFamily(cell)))) {
					// add column : name
					if ("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))) {
						put.add(cell);
					}
					// add column : age
					if ("age".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))) {
						put.add(cell);
					}
				}
			}
			context.write(outputKey, put);
		}
	}

	// Reducer
	public static class WriteBasicReducer extends TableReducer<Text, Put, ImmutableBytesWritable> {
		@Override
		protected void reduce(Text key, Iterable<Put> value, Context context) throws IOException, InterruptedException {
			for (Put put : value) {
				context.write(null, put);
			}
		}
	}

	public static void main(String[] args) throws Exception {
		// configuration
		Configuration conf = HBaseConfiguration.create();
		// create job
		Job job = Job.getInstance(conf, Emp2BasicMapReduce.class.getSimpleName());
		// set run job jar class
		job.setJarByClass(Emp2BasicMapReduce.class);
		// create hbase scan
		Scan scan = new Scan();
		scan.setCacheBlocks(false);
		scan.setCaching(500); // 默认1
		// set other scan attrs
		TableMapReduceUtil.initTableMapperJob("emp", // input table
				scan, // scan instance to control cf and attribute selection
				ReadEmp2BasicMapper.class, // mapper class
				Text.class, // mapper output key
				Put.class, // mapper output value
				job);
		TableMapReduceUtil.initTableReducerJob("basic", // output table
				WriteBasicReducer.class, // reducer class
				job);
		job.setNumReduceTasks(1); // reduce task num
		System.exit(job.waitForCompletion(true) ? 0 : 1);
	}

}

3.执行jar包

注意:在执行的过程中,一定要注意把HBase的包指定到HADOOP_CLASSPATH环境变量中。即,在hadoop_env.sh中添加如下:

export HBASE_HOME=/usr/hdp/2.5.3.0-37/hbase
export HADOOP_HOME=/usr/hdp/2.5.3.0-37/hadoop
export HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase classpath`

否则,就会报错:

Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/hbase/HBaseConfiguration

加入上面的环境变量,我们执行jar包,如下:

# 执行命令
yarn jar hbase-study-jar-with-dependencies.jar

运行结果验证(我们只迁移了name和age)

hbase(main):005:0> scan 'emp'
ROW                                COLUMN+CELL      
 10001                             column=info:address, timestamp=1540373935927, value=hebei sjz yuhua
 10001                             column=info:age, timestamp=1540373917799, value=22 
 10001                             column=info:name, timestamp=1540373904273, value=zhangsan 
 10002                             column=info:address, timestamp=1540373978440, value=henan zhengzhou erqi 
 10002                             column=info:age, timestamp=1540373956551, value=24   
 10002                             column=info:name, timestamp=1540373947414, value=lisi
2 row(s) in 0.0270 seconds

hbase(main):006:0> scan 'basic'
ROW                                COLUMN+CELL   
 10001                             column=info:age, timestamp=1540373917799, value=22
 10001                             column=info:name, timestamp=1540373904273, value=zhangsan   
 10002                             column=info:age, timestamp=1540373956551, value=24  
 10002                             column=info:name, timestamp=1540373947414, value=lisi     
 2 row(s) in 0.0290 seconds

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值