历届试题 小数第n位
时间限制:1.0s 内存限制:256.0MB
问题描述
我们知道,整数做除法时,有时得到有限小数,有时得到无限循环小数。
如果我们把有限小数的末尾加上无限多个0,它们就有了统一的形式。
本题的任务是:在上面的约定下,求整数除法小数点后的第n位开始的3位数。
输入格式
一行三个整数:a b n,用空格分开。a是被除数,b是除数,n是所求的小数后位置(0<a,b,n<1000000000)
输出格式
一行3位数字,表示:a除以b,小数后第n位开始的3位数字。
样例输入
1 8 1
样例输出
125
样例输入
1 8 3
样例输出
500
样例输入
282866 999000 6
样例输出
914
反思自己的错误:
①没认真读题,题中有一个约定是:整数除法结果是有循环节的小数。没认真看,所以一直超时。
我自己的测试数据:12345655 33241567 123
抛开循环节得到的测试答案:310
正确答案:得不到值
因为这个数据是无线不循环小数。
②一开始就想着怎么最简化,所以写的越来越乱。。应该先按清晰的思路写出来,再进行简化。
解题思路:
核心(循环节):按照正常的除法竖式,当余数再次出现时,即出现了循环节。
例如:2/11 2 Mod 11 = 2 ;
20 Mod 11 = 9 ;
90 Mod 11 = 2 ;
20 Mod 11 = 9 ; 如此一来,2/11的循环节就是有两位,重复余数只有2、9两个。
.
Java代码:
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
int a = cin.nextInt();
int b = cin.nextInt();
int n = cin.nextInt();
cin.close();
int res = 0; //存储答案
List<Integer> rems = new ArrayList<>();//用来存储余数
//存储循环节对应的余数
do {
a %= b;
rems.add(a);
a *= 10;
}while(!rems.contains(a%b));//判断余数组rems中是否包含与下一个余数相同的值。
int len = rems.size(); //余数组的总长度,也就数循环节+非循环节的长度
int loopstart = rems.indexOf(a%b);//循环节开始的位置,因为rems包含a%b,所以a%b为循环节的开始
int looplen = len - loopstart; //循环节的长度
//找答案了
for(int i=n-1,ten=100;i<n+2;i++,ten/=10) {
if(i>=loopstart) {
res += rems.get((i-loopstart)%looplen+loopstart)*10/b*ten;
}else {
res += rems.get(i)*10/b*ten;
}
}
System.out.println(res);
}
}
测评结果截图: