动手实现一遍Transformer

最近乘着ChatGpt的东风,关于NLP的研究又一次被推上了风口浪尖。在现阶段的NLP的里程碑中,无论如何无法绕过Transformer。《Attention is all you need》成了每个NLP入门者的必读论文。惭愧的是,我虽然使用过很多基于Transformer的模型,例如BERT,但是对于他们,我也仅仅是会调用而已,对于他们的结构并不熟悉,更不要提修改他们了。
对于Transformer,则更不了解Transformer的细节,直到最近才下定决心复现一遍Transformer。完整的项目链接,我放在GitHub这里了。

工具

我使用的国产的框架,PaddlePaddle。为什么不使用Pytorch呢?因为我的英文并不十分灵光,对于Pytorch的一些API不能准确的理解,有时候理解错一个字就会带来十分巨大的偏差,所以Paddle的中文文档帮了我很大的忙。同时Paddle与Pytorch十分近似的API,也可以帮助我理解Pytorch。

我需要掌握的是Transformer的思想,至于工具的选择,在这个项目上,Paddle与Pytorch并没有什么不同。

模型结构

这里就要祭出这个十分经典的图了。

Transformer架构图

对于这幅图的理解,网上也有很多的介绍,我要做的是复现它。在复现的过程中,我也参考哈佛NLP的Annotated Transformer。那是一篇写的很风骚的代码,但是我认为它并不适合我。

我们就先从输入部分开始说吧:

Embedding

import math
import paddle
import paddle.nn as nn
from paddle import Tensor


class TransformerEmbedding(nn.Layer):
    def __init__(self, vocab_size, d_model=512):
        super(TransformerEmbedding, self).__init__()
        self.d_model = d_model
        self.embedding = nn.Embedding(vocab_size, d_model)
        self.positional_embedding = PositionalEncoding()

    def forward(self, x: Tensor):
        """

        :param x: tensor对象,疑问,这是什么时候转成Tensor的呢?原版的Transformer是使用Tensor生成的数字,所以他不用考虑这个问题。
        又因为Tensor是无法输入字符串的,所以只能输入字符串对应的数字。或许这就是BERT词表存在的意义。
        :return:
        """
        return self.embedding(x) + math.sqrt(self.d_model)


class PositionalEncoding(nn.Layer):

    def __init__(self, d_model: int = 512, max_seq_length: int = 1000):
        """
        PE(pos,2i) = sin(pos/100002i/dmodel)
        通过公式可以知道,位置编码与原来的字信息毫无关系,独立门户的一套操作
        对于在一句话中的一个字对应的512个维度中,位于偶数位置的使用sin函数,位于基数位置的使用cos函数
        """
        super(PositionalEncoding, self).__init__()
        self.pe = paddle.tensor.zeros([max_seq_length, d_model])
        position = paddle.tensor.arange(0, max_seq_length).unsqueeze(1)
        two_i = paddle.tensor.arange(0, d_model, 2)

        temp = paddle.exp(-1 * two_i * math.log(10000.0) / d_model)
        aab = position * temp
        # position 对应的是词的长度
        self.pe[:, 0::2] = paddle.sin(aab.cast('float32'))
        self.pe[:, 1::2] = paddle.cos(aab.cast('float32'))
        #     pe[max_seq_length, d_model]
        self.pe = self.pe.unsqueeze(0)
        #     pe[1,max_seq_length, d_model]

    def forward(self, x: Tensor):
        """
        词向量+位置编码
        :param x: x应该是一个[bactch,seq_length,d_model]的数据

        """
        self.pe.stop_gradient = True
        return x + self.pe[:, x.shape[1]]

在这里的位置编码中,我使用了与哈佛nlp相同的处理,关于这个的理解可以参考The Annotated Transformer的中文注释版(1) - 知乎 (zhihu.com)
公式转换
是数学的力量产生了如此优美的代码。

因为Transformer有很多复用的层,这些复用的层拼接出来了EncoderLayer和DecoderLayer;EncoderLayer堆叠出来了Encoder,DecoderLayer堆叠出来了Decoder。

这些复用的层,我将一一展示:

FeedForward

这是一个很简单的层,就是将输入的结果512维扩展到2048维,然后使用Relu函数后,又降低到原来的512维。

import paddle
import paddle.nn as nn


class FeedForward(nn.Layer):
    def __init__(self, d_model: int = 512, d_ff=2048):
        super().__init__()
        self.lin_to_big = nn.Linear(d_model, d_ff)
        self.lin_to_small = nn.Linear(d_ff, d_model)

    def forward(self, x):
        return self.lin_to_small(paddle.nn.functional.relu(self.lin_to_big(x)))

LayerNorm

这里的代码我是完全copy哈佛nlp的,LayerNorm的思想不是Transformer论文提出的,各大框架也都有自己的实现。我觉得LayerNorm的与Relu这些函数一样,属于基础件,直接调用框架的代码也可以。

import paddle.nn as nn
import paddle


class LayerNorm(nn.Layer):
    def __init__(self, d_model: int = 512, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = self.create_parameter(shape=[d_model], dtype='float32',
                                         default_initializer=nn.initializer.Constant(1.0))
        self.b_2 = self.create_parameter(shape=[d_model], dtype='float32',
                                         default_initializer=nn.initializer.Constant(0.0))

        self.eps = eps

    def forward(self, x):
        # 就是在统计每个样本所有维度的值,求均值和方差,所以就是在hidden dim上操作
        # 相当于变成[bsz*max_len, hidden_dim], 然后再转回来, 保持是三维
        mean = x.mean(-1, keepdim=True)  # mean: [bsz, max_len, 1]
        std = x.std(-1, keepdim=True)  # std: [bsz, max_len, 1]
        # 注意这里也在最后一个维度发生了广播
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

MultiHeadAttention

这是最重要的部分,也是Transformer的精华,讲Transformer其实就是在讲多头注意力机制,我曾经在毕业论文上见过利用注意力机制水论文,但是当时我被唬住了,直到亲手实现过一遍后,我更加确定他们就是在水论文。

相关的解释,我全部加在代码中了。

import copy
import math
from typing import Optional

import paddle
import paddle.nn as nn
from paddle import Tensor


class MultiHeadAttention(nn.Layer):
    def __init__(self, d_model: int = 512, head: int = 8):
        super().__init__()
        self.head = head
        """
        MultiHeadAttention在
论文中一共出现在了3个地方。在EncoderLayer中一处,在DecoderLay中两处。
        论文中设置了头的数量为8。其实是分别使用网络为q,k,v进行了8次变换。
        这个网络映射过程就是论文中提到的权重变换。
        哈佛论文提出的方法很巧妙,与论文有些出入,所以我并不能理解。
        于是完全按照论文的思路来实现。
        为q,k,v分别进行8次变换,那就是需要有24个网络。
        """
        self.linear_list = [copy.deepcopy(nn.Linear(d_model, d_model)) for _ in range(head * 3)]
        # 这是经过多头注意力的拼接后,将他们恢复到512维。
        self.linear_output = nn.Linear(d_model * head, d_model)

    def forward(self, query, encoder_output: Optional[Tensor] = None, mask=False,
                src_mask: Optional[Tensor] = None,
                tgt_mask: Optional[Tensor] = None):
        """

        :param query: query
        :param encoder_output: encoder的输出
        :param mask: 是否是论文中的MASK-multiheadAttention
        :param src_mask: 来自encoder编码层的掩码,或者是encoder输出的掩码。具体如何判读就是tgt_mask是不是None
        :param tgt_mask: 来自decoder的掩码
        :return:
        """
        attention_list = []
        # 在论文中,self.linear_list的数量是24。
        for index, linear in enumerate(self.linear_list):
            if index % 3 == 0:
                # query永远来自于自家
                query = linear(query)
            elif index % 3 == 1:
                # 对于key来说,编码器没什么好说的;解码器中间的多头注意力,key和value都来自编码器的输出
                # 在编码器中,都是使用query进行权重变换的。
                z = query if encoder_output is None else encoder_output
                key = linear(z)
            else:
                z = query if encoder_output is None else encoder_output
                value = linear(z)
                attention_list.append(attention(query, key, value, self.head, src_mask, tgt_mask, mask=mask))

        query = paddle.concat(attention_list, axis=-1)
        return self.linear_output(query)


def attention(query: Tensor, key: Tensor, value: Tensor, head: int,
              src_mask=None,
              tgt_mask=None,
              mask=False) -> Tensor:
    """
    计算 Attention 的函数。在函数中,计算出来的scale是矩阵乘法的结果,我们为了“不让解码器看到未来的结果”计算出scale后
    将相关的部位置设置为一个极小的数字,这样经过softmax后就几乎为0了,达成了“不让解码器看到未来的结果”的效果。这个是用一个
    下三角矩阵做到的。
    除此之外,其他的矩阵都是遮掩padding的矩阵,不需要“不让解码器看到未来的结果”
    :param src_mask:
    :param tgt_mask:
    :return:
    :param query: shape [batch,seq_length,d_model]
    :param key:同上
    :param value:同上
    :param mask:是否开启掩码矩阵。我们要防止模型看到未来的信息,那么未来的信息来自哪里,当然是解码器的输入啦。所以掩码矩阵的shape为[seq_length,seq_length]
    :param head:头数
    """
    assert query.shape[-1] % head == 0
    dk = query.shape[-1] // head
    # paddle的转置操作真奇葩,好像tf也是这样子
    scale = paddle.matmul(query, paddle.transpose(key, [0, 2, 1]))
    scale = scale / math.sqrt(dk)
    if src_mask is not None and tgt_mask is not None:
        # 这说明是在 DecoderLayer 的第二个多头注意力中。
        q_sen_length = scale.shape[-2]
        k_sen_length = scale.shape[-1]
        batch_size = scale.shape[0]
        result = []
        # 这个需要根据src_mask和tgt_mask生成掩码矩阵
        # src_mask是一个[batch,input_seq_length,input_seq_length]的矩阵,tgt_mask同理,不够这两个矩阵的长度可能会不一样。
        #比如我爱中国,4个字翻译成英语 i love china 就是3个字。
        for index in range(batch_size):
            s = paddle.count_nonzero(src_mask[index])
            lie = int(math.sqrt(s.item()))
            p = paddle.count_nonzero(tgt_mask[index])
            row = int(math.sqrt(p.item()))
            temp = paddle.zeros([q_sen_length, k_sen_length])
            temp[:row, :lie] = 1
            result.append(temp)
        result_mask = paddle.to_tensor(result)
        scale = masked_fill(scale, result_mask, -1e9)

    elif src_mask is not None:
        # Encoderlayer中的mask,也就是为了遮掩住padding的部分
        scale = masked_fill(scale, src_mask, -1e9)
    elif tgt_mask is not None:
        # decoderlayer中的mask,也就是为了遮掩住padding的部分
        scale = masked_fill(scale, tgt_mask, -1e9)

    if mask:
        # 这里有一个下三角,只有decoderlayerr才会进入,但是我们这里的scale是一个[batch,tgt_length,tgt_length]
        seq_length = query.shape[-2]
        down_metric = (paddle.triu(paddle.ones([seq_length, seq_length]), diagonal=1) == 0)
        scale = masked_fill(scale, down_metric, -1e9)
        if tgt_mask is not None:
            assert tgt_mask.shape == scale.shape
            # tgt_mask也是一个[batch,tgt_length,tgt_length]的矩阵
            scale = masked_fill(scale, tgt_mask, -1e9)

    return paddle.matmul(nn.functional.softmax(scale), value)


def masked_fill(x, mask, value):
    """
    从paddle官方抄的代码,哈哈
    :param x:
    :param mask:
    :param value:
    :return:
    """
    mask = paddle.cast(mask, 'bool')
    y = paddle.full(x.shape, value, x.dtype)
    return paddle.where(mask, x, y)

接下来就开始拼接了

EncoderLayer

import paddle.nn as nn

from FeedForward import FeedForward
from LayerNorm import LayerNorm
from MultiHeadAttention import MultiHeadAttention


class EncoderLayer(nn.Layer):
    def __init__(self):
        """
        编码器的组成部分,一个多头注意力机制+残差+Norm,一个前馈神经网路+残差+Norm,
        """
        super(EncoderLayer, self).__init__()
        self.multi_head = MultiHeadAttention()
        self.feed_forward = FeedForward()
        self.norm = LayerNorm()

    def forward(self, x, src_mask=None):
        """
        :param x: shape [batch,max_length,d_model]
        :return:
        """

        y = self.multi_head(x, src_mask=src_mask)
        y = x + self.norm(y)
        z = self.feed_forward(y)
        z = y + self.norm(z)
        return z

DecoderLayer

import paddle.nn as nn
from paddle import Tensor

from FeedForward import FeedForward
from LayerNorm import LayerNorm
from MultiHeadAttention import MultiHeadAttention


class DecoderLayer(nn.Layer):
    def __init__(self):
        """
        解码器部分,
        一个带掩码的多头注意力+norm+残差
        一个不带掩码的多头注意力+norm+残差
        一个前馈神经网络+norm+残差

        """
        super(DecoderLayer, self).__init__()
        self.mask_multi_head_attention = MultiHeadAttention()
        self.multi_head_attention = MultiHeadAttention()
        self.feed_forward = FeedForward()
        self.norm = LayerNorm()

    def forward(self, x, encoder_output: Tensor, src_mask: None, tgt_mask: None):
        """

        :param x: decoder 的输入,他的初始输入应该只有一个标记,但是shape依然是[batch,seq_length,d_model]
        :param encoder_output:编码器的输出
        """
        y = self.mask_multi_head_attention(x, mask=True, tgt_mask=tgt_mask)
        query = x + self.norm(y)
        z = self.multi_head_attention(query, encoder_output, src_mask=src_mask, tgt_mask=tgt_mask)
        z = query + self.norm(z)
        p = self.feed_forward(z)
        output = self.norm(p) + z
        return output

Endoder

import copy

import paddle.nn as nn

from EncoderLayer import EncoderLayer


class Encoder(nn.Layer):
    def __init__(self, num_layers: int):
        super(Encoder, self).__init__()
        self.layers = nn.LayerList([copy.deepcopy(EncoderLayer()) for _ in range(num_layers)])

    def forward(self, x,src_mask:None):
        for encoder_layer in self.layers:
            x = encoder_layer(x,src_mask)
        return x
.norm(p) + z
        return output

Decoder
import copy

import paddle.nn as nn

from DecoderLayer import DecoderLayer


class Decoder(nn.Layer):

    def __init__(self, num_layers: int = 6):
        super(Decoder, self).__init__()
        self.decoder_layers = nn.LayerList([copy.deepcopy(DecoderLayer()) for _ in range(num_layers)])

    def forward(self, x, encoder_output, src_mask, tgt_mask):
        """
        :param x: shape [batch,seq_legth,d_model]
        """
        for layer in self.decoder_layers:
            x = layer(x, encoder_output, src_mask, tgt_mask)
        return x

最后集成为Transformer,它就是一个编码器,解码器工程。

EncoderDecoder

from typing import Optional

import paddle
import paddle.nn as nn
from paddle import Tensor

from Decoder import Decoder
from Embedding import TransformerEmbedding, PositionalEncoding
from Encoder import Encoder


class EncoderDecoder(nn.Layer):
    def __init__(self, vocab_size: int, d_model: int = 512):
        super(EncoderDecoder, self).__init__()
        self.layers_nums = 3
        self.embedding = nn.Sequential(
            TransformerEmbedding(vocab_size),
            PositionalEncoding()
        )
        self.encoder = Encoder(self.layers_nums)
        self.decoder = Decoder(self.layers_nums)
        self.linear = nn.Linear(d_model, vocab_size)
        self.soft_max = nn.Softmax()
        self.loss_fct = nn.CrossEntropyLoss()

    def forward(self, x, label, true_label: Optional[Tensor] = None, src_mask=None, tgt_mask=None):
        input_embedding = self.embedding(x)
        label_embedding = self.embedding(label)
        encoder_output = self.encoder(input_embedding, src_mask)
        decoder_output = self.decoder(label_embedding, encoder_output, src_mask, tgt_mask)
        logits = self.linear(decoder_output)
        res_dict = {}
        if true_label is not None:
            loss = self.loss_fct(logits.reshape((-1, logits.shape[-1])),
                                 true_label.reshape((-1,)))
            res_dict['loss'] = loss
        result = self.soft_max(logits)
        max_index = paddle.argmax(result, axis=-1)
        res_dict['logits'] = result
        res_dict['index'] = max_index
        return res_dict

然后是一个工具类,用于生成词表以及将输入转化为向量。

from typing import List

import paddle
from paddle import Tensor


def convert():
    chinese = ['你好吗', "我爱你", "中国是一个伟大的国家"]
    english = ['how are you', 'i love you', 'china is a great country']
    cc = []
    for item in chinese:
        for word in item:
            # 中文一个字一个字的加入list
            cc.append(word)
    for item in english:
        cc.extend(item.split())

    word_list = list(set(cc))
    word_list.sort(key=cc.index)
    word_list.insert(0, 0)
    word_list.append(-1)
    word2id = {item: index for index, item in enumerate(word_list)}
    id2word = {index: item for index, item in enumerate(word_list)}
    return word2id, id2word


def convert_list_to_tensor(str_list: List[str], endlish=True) -> (Tensor, Tensor):
    """

    :param str_list:
    :return: 原始的id矩阵;处理好了的掩码矩阵
    """
    batch = len(str_list)
    max_length = 0
    if endlish:
        for item in str_list:
            ll = item.split(' ')
            max_length = len(ll) if len(ll) > max_length else max_length
    else:
        max_length = len(max(str_list, key=len))
    max_length += 2
    word2id, id2word, = convert()
    result = []
    padding_metric = []
    pad = -1
    mask_seq_seq = []
    for sentence in str_list:
        ids = [0, ]  # 开始的标志
        padding_mask = []
        if endlish:
            word_list = sentence.split(' ')
            for word in word_list:
                ids.append(word2id[word])
        else:
            for word in sentence:
                ids.append(word2id[word])
        padding_mask.extend([1] * len(ids))
        ids.append(0)  # 结束的标志
        pad_nums = max_length - len(ids)
        ids.extend([word2id[pad]] * pad_nums)
        padding_mask.extend([0] * (len(ids) - len(padding_mask) - 1))
        result.append(ids)
        count = padding_mask.count(1)
        metric_mask = paddle.zeros([len(padding_mask), len(padding_mask)])
        metric_mask[:count, :count] = 1
        mask_seq_seq.append(metric_mask)
        padding_metric.append(padding_mask)

    return paddle.to_tensor(result).reshape([batch, -1]), \
        paddle.to_tensor(padding_metric).reshape([batch, -1]), \
        paddle.to_tensor(mask_seq_seq).reshape([batch, len(padding_mask), -1]),

接下来这里简单说一下,用到了 Teaching Force 思想。
我们的数据是这样的格式 < begin>内容< end> ,在这个程序中,begin和end都是0。这样的数据,喂给输入端时候去掉最开始的< begin>,在训练时去掉末尾的< /end>喂给 Decoder 。这样做的目的是训练 Decoder 根据自己已经有的信息预测下一个字符的能力。这样做的目的,是因为在测试阶段我们只会给 Decoder 一个< begin> 字符,让 Decoder 根据这个 < begin> 字符和 Encoder 的输出来输出内容。

import paddle
import paddle.nn as nn

# 不知道这个有没有用。。
nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())

from EncoderDecoder import EncoderDecoder
from utils import convert_list_to_tensor


def train():
    english = ['i love you', 'china is a great country', 'i love china', 'china is a country']
    chinese = ['我爱你', '中国是一个伟大的国家', '我爱中国', '中国是一个国家']
    input_ids, _, input_metric = convert_list_to_tensor(english)
    encod_ids, _, encod_metric = convert_list_to_tensor(chinese, endlish=False)
    input_ids = input_ids[:, 1:]
    true_labels = encod_ids[:, 1:]
    encod_ids = encod_ids[:, :-1]
    transformer = EncoderDecoder(vocab_size=26, d_model=512)
    adamw = paddle.optimizer.AdamW(learning_rate=0.001, parameters=transformer.parameters())
    for epoch in range(700):
        output_dict = transformer(input_ids, encod_ids, true_labels, src_mask=input_metric, tgt_mask=encod_metric)
        loss = output_dict['loss']
        print(f"第{epoch + 1}次训练,loss是{loss.item()},logits是{paddle.tolist(output_dict['index'])}")

        adamw.clear_gradients()
        loss.backward()
        adamw.step()
    evaluate(transformer)


@paddle.no_grad()
def evaluate(model: EncoderDecoder, MAX_LENGTH=6):
    model.eval()
    str_list = ['china']
    enput_ids, _, enput_mask = convert_list_to_tensor(str_list)
    enput_ids = enput_ids[:, 1:]

    de_ids = [[0]]
    de_ids = paddle.to_tensor(de_ids)
    for i in range(MAX_LENGTH):
        tgt_mask = paddle.ones([i + 1, i + 1]).unsqueeze(0)

        output_dict = model(enput_ids, de_ids, src_mask=enput_mask, tgt_mask=tgt_mask)

        result = output_dict['index']
        # temp = result[:, -1].item()
        # if temp == 0:
        #     print("结束了")
        #     return
        g = result[:, -1].unsqueeze(0)
        de_ids = paddle.concat((de_ids, g), axis=1)
        print(paddle.tolist(de_ids))

if __name__ == '__main__':
    train()
    # vocab_size = 11
    # original = [0, 1, 2, 3, 4, 5, 6, 8, 0]
    # encode_input = original[1:]
    # decode_input = original[0:-1]
    # encode_input = paddle.to_tensor(encode_input).unsqueeze(0)
    # decode_input = paddle.to_tensor(decode_input).unsqueeze(0)
    #
    # transformer = EncoderDecoder(vocab_size=vocab_size, d_model=512)
    # adamw = paddle.optimizer.AdamW(learning_rate=0.001, parameters=transformer.parameters())
    # for epoch in range(400):
    #     output_dict = transformer(encode_input, label=decode_input, true_label=encode_input)
    #     loss = output_dict['loss']
    #     print(f"第{epoch + 1}次训练,logits是{paddle.tolist(output_dict['index'])},loss是{loss.item()}")
    #     adamw.clear_gradients()
    #     loss.backward()
    #     adamw.step()
    # evaluate(transformer)

总结

在这个过程中,我深刻的理解了这里的Decoder是串行的,刚开始不知道如何实现,看了TensorFlow的官方实现后才领悟到。

实际上的效果并不是很好,我也不知道是哪里的问题。再使用哈佛nlp的Transformer中,他们的重复数字的例子效果也不好,有可能是数据量太少的原因?

我觉得在亲自动手实现架构的过程,学到的东西要比纸上谈兵多的多。在复现的过程中,也遇到了一些细节问题,有些是框架的,有些是模型的,文章可能也有遗漏错误。欢迎大家提出,我们一起讨论学习。

  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
抱歉,我是一名语言模型,无法进行具体的代码实现。但我可以为您提供一些Transformer的基本知识和实现步骤。 Transformer是一种基于自注意力机制的深度学习模型,广泛应用于自然语言处理和图像处理领域。其核心思想是通过多层的自注意力和前馈神经网络来学习输入序列之间的依赖关系,并生成对应的输出序列。 下面是一个基本的Transformer模型的实现步骤: 1. 定义输入层和输出层的嵌入矩阵。输入层嵌入矩阵将输入序列中的词汇转换为向量表示,输出层嵌入矩阵将输出序列中的词汇向量表示转换为词汇。 2. 定义多层的Encoder和Decoder。每个Encoder包含一个自注意力层和一个前馈神经网络层,用于学习输入序列的特征表示。每个Decoder也包含一个自注意力层和一个前馈神经网络层,用于生成输出序列的特征表示。 3. 定义多头自注意力机制。每个头都会学习不同的关注点和权重,可以更好地捕捉序列中的语义信息。 4. 定义位置编码器。由于Transformer没有使用递归结构,因此需要为输入序列中的每个位置提供位置信息,以帮助模型学习序列中的顺序关系。 5. 定义损失函数。可以使用交叉熵损失函数来计算模型的预测结果与实际结果之间的差异。 6. 训练模型。通过反向传播算法来更新模型的参数,使其能够更好地适应输入序列和输出序列之间的关系。 以上是Transformer模型的基本实现步骤,具体实现细节还需要根据具体任务和数据集进行调整和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值