AI 是如何进行数据训练的

AI的数据训练涉及数据预处理、模型构建、损失函数设定和反向传播等阶段。监督学习使用输入输出对训练模型,如决策树和神经网络。无监督学习则在无标签数据中寻找模式,如聚类和降维。半监督学习结合有标签和无标签数据提升模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI 是如何进行数据训练的


数据训练分几个阶段

1、数据预处理阶段
主要是对数据进行预处理,包含数据清洗、数据归一化、特征提取
2、模型构建阶段
3、设定损失函数
4、反向传播算法
5、模型评估、优化

数据归一化:把数据在多个维度的度量,统一为一个相同的度量区间,以平衡它们之间的影响因素。例如把 0-1000 区间的面积特征和 0 - 10000000 之间的
价格特征都归一为 0-1 区间,或者归一到 0±1 区间

监督学习

监督学习是一种通过提供输入和输出对来训练模型的机器学习方法。在监督学习中,我们会为模型提供一组已知的输入和输出数据(标签),模型通过学习这些数据
来预测未知数据的输出结果。常见的监督学习算法包括决策树、神经网络、支持向量机等。

无监督学习

无监督学习是一种在没有标签的情况下训练模型的机器学习方法。在无监督学习中,模型需要自己找出数据中的模式和结构,而不是通过标签进行指导。常见的无监
督学习算法包括聚类、降维、关联规则挖掘等。

半监督学习

半监督学习是介于监督学习和无监督学习之间的一种机器学习方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单OnlineZuozuo

感谢哥哥姐姐的打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值