自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

原创 PointRend原理及源码解读--2020.2

论文PointRend: Image Segmentation as RenderingPointRend 能够通过一种不断迭代的算法来自适应的挑选出有问题的区域,并对该区域的像素点进行精细化的调整预测(多层感知机)。1、PointRend原理1.1 PointRend结构PointRend模块主要由三部分组成:①难点的选取策略:并不是feature map中的全部点,为了降低计算量②基于点的特征point-wise feature获取:用双线性插值③Point head:一个小的可训练的

2021-06-02 21:56:22 2420 3

原创 SegFix原理及源码--2020.8

论文SegFix: Model-Agnostic Boundary Refinement for Segmentation本文提出了一种模型无关的后处理方案,即用内部像素的预测代替原来不可靠的边界像素预测,以提高由任何现有分割模型生成的分割结果的边界质量。该方法仅对输入图像进行两步处理:(i)定位边界像素;(ii)识别每个边界像素对应的内部像素(通过学习从边界像素到内部像素的方向来建立对应关系)。该方法不需要先验信息的分割模型,达到接近实时的速度。实验验证,SegFix减少了cityspace数据集中

2021-06-02 15:59:11 2433 3

原创 ResNeSt--2020.4

论文ResNeSt: Split-Attention Networks1、ResNeSt的网络结构ResNeSt中的S代表split。分离注意力模块它可以跨特征图组实现信息交互。分离注意力模块是计算单元,由特征图组合分离主注意力操作组成。借鉴了ResNeXt网络的思想,将输入分为K个,每一个记为Cardinal1-k ,然后又将每个Cardinal拆分成R个,每一个记为Split1-r,所以总共有G=KR个组。1. Feature-map Group:将输入的特征图分成 KKK 个基数组(Ca

2021-05-29 10:36:18 637

原创 HRNetV2-2020.3

论文Deep High-Resolution Representation Learningfor Visual Recognition1、HRNet的网络结构更加详细的解释及源码部分,这两篇博文写的很详细,可以参考。HRNet(v1,v2,v2p)论文语义分割笔记及代码简读(Deep high-resolution representation learning for visual recognition )这篇的对源码的解读很好。论文笔记-HRNet-Deep High-Resol

2021-05-29 09:39:20 478

原创 ResNeXt-2017.4

论文Aggregated Residual Transformations for Deep Neural NetworksResNeXt是ResNet和Inception的结合体,不同于Inception v4的是,ResNext不需要人工设计复杂的Inception结构细节,而是每一个分支都采用相同的拓扑结构。ResNeXt的本质是分组卷积(Group Convolution),通过变量基数(Cardinality)来控制组的数量。组卷机是普通卷积和深度可分离卷积的一个折中方案,即每个分支产生的Fe

2021-05-24 17:24:58 205

原创 深度学习之批归一化--BN详解

论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》1、为什么需要BN?深层神经网络中,中间某一层的输入是其之前的神经层的输出。因此,其之前的神经层的参数变化会导致其输入的分布发生较大的差异。利用随机梯度下降更新参数时,每次参数更新都会导致网络中间每一层的输入的分布发生改变。越深的层,其输入分布会改变的越明显。内部协变量偏移(Internal Covariate

2021-05-21 20:01:15 2585

原创 Xception-2017.4

论文Xception: Deep Learning with Depthwise Separable Convolutions1、作者从Inception v3出发,假设解耦通道相关性和空间相关性,进行简化,推导出深度可分离卷积作者认为,Inception模块背后的想法是,通过将其明确地分解为一系列独立于跨通道相关性和空间相关性的运算,将其简化和提高效率。更准确地说,典型的Inception模块首先通过一组1x1卷积查看跨通道相关性,然后将输入数据映射到3或4个比原始输入空间小的空间中,然后在这些较小的

2021-05-20 11:02:37 256

原创 深度学习之归一化补充篇--GN,LN,IN

神经网络中,常用的归一化策略有BN(Batch Normalization), WN(Weight Normalization), LN(Layer Normalization), IN(Instance Normalization),GN(Group Normalization).BN是针对单个神经元进行归一化操作,多用于batch size大的CNN网络。使用batch size数量的样本的均值和方差,近似整体样本的均值和方差,独立地规范每一个输入维度x。也有人说,BN输出的是标准正态分布。BN使用的

2021-04-22 14:44:11 2347

原创 mac上使用sshfs将远程文件挂载到本地

1、安装brew caskbrew install cask会报错。会提示clone into /usr/local/Homebrew/Library/Taps/homebrew/homebrew-cask…可以直接从github上进行clone,git clone git://mirrors.ustc.edu.cn/homebrew-cask.git /opt/homebrew/Library/Taps/homebrew/homebrew-cask即可成功。2、安装osxfusebrew

2021-04-15 16:29:12 887

原创 Git常用

1、git rm 与git rm --cached当我们需要删除暂存区或分支上的文件, 同时工作区也不需要这个文件了, 可以使用git rm file_pathgit commit -m 'delete somefile'git push当我们需要删除暂存区或分支上的文件, 但本地又需要使用, 只是不希望这个文件被版本控制, 可以使用git rm --cached file_pathgit commit -m 'delete remote somefile'git push...

2020-06-12 19:16:44 121

原创 常用的Linux命令汇总

1、cd,ls,pwd等简单命令cd dir 切换目录lsls -a,全部的文件ls -l ,详细信息显示,属性、大小等等。ls -h,以人性化的方式显示文件大小mkdirmkdir dir 创建目录mkdir -p :直接创建多层目录cp 复制-f:强制复制-i:交互,若目标档(destination)已经存在时,在覆盖时会先询问动作的进行(常用)cp -r:递归持续复制,用於目录的复制行为;(常用)mv-f :force 强制的意思,如果目

2020-06-08 12:28:49 172

原创 基于CenterTrack的3D目标检测源码解读

1、数据集nuScenes2、预处理将输入图片做放射变换,映射成固定的模型输入尺寸800x448归一化通道转置:HWC转成CHWdef pre_process(self, image, scale, input_meta={}): resized_image, c, s, inp_width, inp_height, height, width = \ self._transform_scale(image) #通过3点获取仿射变换的转换矩阵 trans

2020-05-25 14:10:35 3461

原创 高效VoVNet

VoVnet, It means Variety of View Network。论文An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection近年来出现的高效网络,如MobileNet,ShuffleNet等主要关注于处理FLOPs和模型大小(通过深度可分离卷积的方式),但是这...

2020-05-06 18:06:15 791

原创 目标检测论文之FCOS

论文 FCOS: Fully Convolutional One-Stage Object Detection及GitHub源码地址FCOS做目标检测,模仿语意分割,对每个像素进行预测。避免了和anchor(proposal)相关的复杂计算和超参数,只需要一个NMS的后处理;最优结果:backbone用ResNeXt-64x4d-101,AP=44.7%.1、Priorfeature m...

2020-05-02 15:10:30 468

原创 CenterNet做2D和3D目标检测

论文Objects as Points源码GitHub地址CenterNet是全卷积的神经网络,不需要额外的NMS的后处理,属于one-stage的检测方法。1、2D目标检测通过预测目标的中心点keypoint、由于下采样带来的中心点的偏移offset及尺寸size来获取目标的bounding box。keypoint: 输出二值heatmap,$ \hat{Y}\in [0,1]^{\...

2020-05-01 15:29:41 3140

原创 python的filter函数

filter函数接收两个参数:函数和序列。作用:将函数作用于序列的每一个元素,并且根据返回值是True/False来保留/删除序列中的元素。例如:用filter来求1~100内的素数。可以采用这样的方法:首先,列出从2开始的所有自然数,构造一个序列:取序列的第一个数2,它一定是素数,然后用2把序列的2的倍数筛掉:取新序列的第一个数3,它一定是素数,然后用3把序列的3的倍数筛掉:取新序...

2019-12-17 17:22:28 208

原创 python生成器

创建生成器的方法:1、把一个列表生成式的[] 换成()即可。2、用yield生成生成器函数。生成器的遍历输出可以用next(),但最好用for 循环,避免出现StopIteration错误。例如输出杨辉三角def triangles(): for i in range(1,10): l_i = [1] if i == 1 : ...

2019-12-17 16:10:28 130

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除