机器学习
「已注销」
这个作者很懒,什么都没留下…
展开
-
通俗理解kaggle比赛大杀器xgboost
本题解析来源于July的CSDN博客《通俗理解kaggle比赛大杀器xgboost》,特原封不动的刊载于此。0 前言xgboost一直在竞赛江湖里被传为神器,比如时不时某个kaggle/天池比赛中,某人用xgboost于千军万马中斩获冠军。而我们的机器学习课程里也必讲xgboost,如寒所说:“RF和GBDT是工业界大爱的模型,Xgboost 是大杀器包裹,Kaggle各种Top排行榜曾一度呈现Xgboost一统江湖的局面,另外某次滴滴比赛第一名的改进也少不了Xgboost的功劳”。此外,公司七月在原创 2020-05-11 13:53:10 · 631 阅读 · 0 评论 -
机器学习相关算法介绍
GBDTBoosted Trees & xgboost 介绍FTRL在线学习算法FTRL详解点击率预估算法:FM与FFM在线最优化求解(Online Optimization)原创 2019-08-29 18:21:05 · 286 阅读 · 0 评论 -
GBDT 算法:原理篇
GBDT 算法:原理篇tags: 学习笔记 机器学习 GBDTGBDT 是常用的机器学习算法之一,因其出色的特征自动组合能力和高效的运算大受欢迎。这里简单介绍一下 GBDT 算法的原理,后续再写一个实战篇。1、决策树的分类决策树分为两大类,分类树和回归树。分类树用于分类标签值,如晴天/阴天/雾/雨、用户性别、网页是否是垃圾页面;回归树用于预测实数值,如明天的温度、用户的年龄、网页的...原创 2019-08-29 18:22:24 · 294 阅读 · 0 评论 -
机器学习--Logistic回归计算过程的推导
1.引言看了Stanford的Andrew Ng老师的机器学习公开课中关于Logistic Regression的讲解,然后又看了《机器学习实战》中的LogisticRegression部分,写下此篇学习笔记总结一下。首先说一下我的感受,《机器学习实战》一书在介绍原理的同时将全部的算法用源代码实现,非常具有操作性,可以加深对算法的理解,但是美中不足的是在原理上介绍的比较粗略,很多细节没有具...原创 2019-09-11 17:42:29 · 194 阅读 · 0 评论 -
Parameter Server架构
Parameter Server架构现在的机器学习系统,但凡是大一点的公司,恐怕都在用分布式了。而在分布式机器学习领域,最出名的恐怕就是少帅的PS框架了。在本博文里,PS框架特指第三代PS框架,即少帅的PS框架,PS框架在本文里有和分布式机器学习框架等同的意义。本片博客是论文笔记性质,特此声明。现在的大数据机器学习系统,通常数据在1TB到1PB之间,参数范围在109和1012左右。再这...原创 2019-09-11 17:43:39 · 253 阅读 · 0 评论 -
深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)
前言(标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。SGD此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent...原创 2019-09-11 17:46:04 · 194 阅读 · 0 评论 -
条件概率,全概率,贝叶斯公式理解
简介学过概率理论的人都知道条件概率的公式:P(AB)=P(A)P(B|A)=P(B)P(A|B);即事件A和事件B同时发生的概率等于在发生A的条件下B发生的概率乘以A的概率。由条件概率公式推导出贝叶斯公式:P(B|A)=P(A|B)P(B)/P(A);即,已知P(A|B),P(A)和P(B)可以计算出P(B|A)。假设B是由相互独立的事件组成的概率空间{B1,b2,...bn}。则P(A)...转载 2019-09-11 17:49:26 · 5014 阅读 · 0 评论