机器视觉
文章平均质量分 89
Dr.视觉小新
追求精致机器视觉算法的猪猪尸。主攻结构光三维重建以及三维场景渲染,分享区块链和元宇宙心得和博士所感。
展开
-
(荐) 从图像到三维视觉的免费课程——机器视觉原理与应用
# Tips:天天都会有很多做三维视觉的同学在加博主QQ微信问问题,大多是基础性问题,博主反思了一波,可能博客中的文章还不够具体,而且内容广度还不够(博主水平有限)。最近正好发现了这么一门课(目前是免费公开的),是从事机器视觉的一线青椒的新作,所提知识点讲解的都非常详细,透彻,博主默默学了一遍后收益匪浅,好知识博主还是很乐意与大家分享的,于是推荐给大家,希望能有所收获。# 课程介绍机器智能化是机械学科的重要发展方向和跨学科的热门研究领域,而机器视觉是实现机器智能化的重要途径之一。通过在本课.原创 2021-04-27 15:06:53 · 1538 阅读 · 4 评论 -
视差图Disparity与深度图Depth Map的一点知识
(转载不是目的,而是为了方便自己!)双目立体视觉,在百度百科里的i解释是这样解a释的:双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。一 、视差 Disparity与深度图提到双目视觉就不得不提视差图:双目立体视觉...转载 2020-05-07 08:39:51 · 32805 阅读 · 4 评论 -
NMS——非极大值抑制详解与实现(matlab)
NMS(non maximum suppression),中文名非极大值抑制,在很多计算机视觉任务中都有广泛应用,如:边缘检测、目标检测等。 非极大值抑制顾名思义就是抑制不是极大值的元素,搜索局部的极大值。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法,而是用于在目标检测中用于提取分数最高的窗口的。例如在行人检...原创 2019-07-14 16:54:38 · 2386 阅读 · 0 评论 -
基于形态学运算的图像变换
一、形态学滤波对图像进行腐蚀、膨胀运算1.概念及原理(1)腐蚀和膨胀是形态学中最基本的运算,而结构元素又是数学形态学中最基本的工具。结构元素可以简单理解为像素的结构以及一个原点。使用形态学滤波就是对像素的每个元素应用这个结构,当结构元素的原点和像素对齐时,它与图像的相交部分定义了一组进行形态学运算的像素。结构元素可以是任何形状,我们一般使用简单的方形、圆形、或菱形,原点即位于中心位置。(2)...转载 2019-04-18 20:00:18 · 1220 阅读 · 0 评论 -
区域生长算法求连通域(含完整工程代码)
图像分割是一种重要的图像处理技术,而区域生长是图像分割技术的一种。区域生长的基本思想是将具有相似性的像素集合起来构成区域。首先对每个需要分割的区域找出一个种子像素作为生长的七点,然后将种子像素周围邻域中与种子有相同或相似性质的像素(根据事先确定的生长或相似准则来确定)合并到种子像素所在的区域中。而新的像素继续作为种子向四周生长,直到再没有满足条件的像素可以包括进来,一个区域就生长而成了。种...转载 2019-04-22 21:05:11 · 1914 阅读 · 1 评论 -
图像像素梯度方向角和可视化ROI图像窗口滑动(opencv+c++)
下面代码实现两个功能(1)获取图像上每个像素梯度方向角;(2)可视化ROI区域在大图像上的滑动。(1)获取图像上每个像素梯度方向角 uchar* pxvec = theta_x.ptr<uchar>(0); float theta,degree; Mat pv = Mat::zeros(srcImg.size(), CV_32FC1);...原创 2019-04-22 15:47:24 · 1749 阅读 · 5 评论 -
LOG,Harris,SUSAN角点及边缘检测原理和代码实现
目录:一、 LOG算子二、Harris算子三、SUSAN算子一、LOG算子LOG算子:是高斯和拉普拉斯的双结合,即集平滑和边沿于一身的算子模型!注意这个模型跟前面的一个滤波器很相似,就是各向异性滤波器!只不过是各向异性滤波器是高斯一阶导函数,而LOG可以看做是二阶导函数!这两个模型来源最初都是因为求导导致模板对噪声干扰敏感性比较强!1、拉普拉斯算子的出发点在图像中,...原创 2019-04-09 20:28:20 · 4607 阅读 · 1 评论 -
伽罗华域下的伪随机序列图像编码(一)
最近看了一篇TPAMI文章Determining Both Surface Position and Orientation in Structured-Light-Based Sensing,是用伪随机序列编码图像,图像是这样的:最后利用该编码图像重构出来的结果是这样的 具体怎么编码呢?怎么得到最终的结果呢?今天先简单从下面三部分介绍:1,伪随机序列2,伽罗华域...原创 2019-03-28 21:39:19 · 2453 阅读 · 1 评论 -
单目结构光三维重建 多频外差单目重建
单目结构光三维重建基于结构光的重建包括了双目三维重建和单目三维重建,双目的重建方法主要采用双目立体视觉算法来匹配两幅图片的相位信息,可以参考我的多频外差双目重建,这里不做介绍了。主要还是介绍下我做的单目三维重建,当然结构光采用的方法还是基于多频外差的方法。传统的单目算法是将投影仪设备当做一个反向相机来处理的,其实质还是双目的立体匹配方法。这种方法缺点是投影仪的畸变大精度不高,而且标定过程也比较...转载 2019-04-07 23:38:23 · 4321 阅读 · 3 评论 -
范数的物理意义
范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。 介绍主题之前,先来谈一个非常重要的数学思维方法:几何方法。在大学之前,我们学习过一次函数、二次函数、三角函数、指数函数、对数函数等,方程则是求函数的零点;到了大学,我们学微积分、复变函数、实变函数、泛函等。我们一直都在学习和研究各种函数...原创 2019-03-31 21:14:12 · 5660 阅读 · 1 评论 -
计算两幅图像的重叠区域
问题描述:已知两幅图像Image1和Image2,计算出两幅图像的重叠区域,并在Image1和Image2标识出重叠区域。算法思想:若两幅图像存在重叠区域,则进行图像匹配后,会得到一张完整的全景图,因而可以转换成图像匹配问题。图像匹配问题,可以融合两幅图像,得到全景图,但无法标识出在原图像的重叠区域。将两幅图像都理解为多边形,则其重叠区域的计算,相当于求多边形的交集。通过多边形...转载 2019-04-19 16:15:28 · 13148 阅读 · 13 评论 -
光照不均匀图像分割技巧1——分块阈值
前言 在数字图像处理中,图像分割是很关键的一步,当图像质量较好,光照很均匀的时候只需用全局阈值的方法就能很完美地完成图像分割任务,但是有些时候会遇到光照不均匀的现象,这个时候就需要用一些技巧才能达到比较好的分割效果,本文要介绍的是一种通过分块阈值进行分割的方法。实例 在进入正题之前,我们先看一个实例,下面图1和图3为做硬币面额识别拍摄的,可以看到,由于硬币表面的反光以及打光角度的原因,...转载 2019-05-27 22:28:16 · 4643 阅读 · 2 评论 -
最详细、最完整的相机标定讲解
相机标定详解最近做项目要用到标定,因为是小白,很多东西都不懂,于是查了一堆的博客,但没有一个博客能让我完全能看明白整个过程,绝大多数都讲的不全面,因此自己总结了一篇博客,给自己理一下思路,也能够帮助大家。(张正友标定的详细求解还未完全搞明白,后面再加)参考博客:相机标定(Camera calibration)原理、步骤(http://blog.csdn.net/lql0716/artic...翻译 2019-07-14 09:30:08 · 20429 阅读 · 3 评论 -
OpenCV亚像素角点cornerSubPixel()源代码分析
上一篇博客中讲到了goodFeatureToTrack()这个API函数能够获取图像中的强角点。但是获取的角点坐标是整数,但是通常情况下,角点的真实位置并不一定在整数像素位置,因此为了获取更为精确的角点位置坐标,需要角点坐标达到亚像素(subPixel)精度。1. 求取亚像素精度的原理 找到一篇讲述原理非常清楚的文档https://xueyayang.github.io/pdf_po...转载 2019-07-15 08:07:43 · 638 阅读 · 0 评论 -
关于相机内参中的焦距fx和fy
当我们用OpenCV相机标定函数去标定相机时,我们能得到一个相机的内部参数,简称“内参”。内参是一个3×3 的矩阵,其中cx和cy很容易理解,它们表示相机光轴在图像坐标系中的偏移量,以像素为单位。但对于焦距fx和fy就不是很直观了。为什么一个相机会出现两个焦距呢?在我们习惯使用的相机针孔模型中,一个透镜的焦距通常只有一个。然而我们不能用针孔模型去解释这两个内参中的焦距。但我们可以从透...转载 2019-07-20 19:28:42 · 21881 阅读 · 10 评论 -
(独家原创)多步相移法解相位详细推导
话不多说,直接看推导过程!最后计算的结果少了一个负号,请看的时候注意一下。如果有疑问,请留言!原创 2019-07-26 19:56:37 · 15633 阅读 · 13 评论 -
(独家原创)多步相移法解相位详细推导(补充)
对于上一篇博文《多步相移法解相位详细推导》,最后一步推导没写,有同学说看不懂,需要具体过程,(这里求逆时求的是伪逆),在这里贴上:有疑问请留言或者QQ(857467352)联系。...原创 2019-08-14 21:25:51 · 5334 阅读 · 5 评论 -
二维伪随机序列结构光编码
如果一个序列,一方面它是可以预先确定的,并且是可以重复地生产和复制的;一方面它又具有某种随机序列的随机特性(即统计特性),我们便称这种序列为伪随机序列。因此可以说,伪随机序列是具有某种随机特性的确定的序列。它们是由移位寄存器产生确定序列,然而他们却具有某种随机序列的随机特性。因为同样具有随机特性,无法从一个已经产生的序列的特性中判断是真随机序列还是伪随机序列,只能根据序列的产生办法...原创 2019-08-15 10:09:59 · 2042 阅读 · 5 评论 -
基于单目视觉的三维重建算法综述(补充)
作者:SIGAI特邀作者陈泰红PDF地址:http://sigai.cn/paper_97.html个人观点:1、尽管SfM在计算机视觉取得显著成果并应用,但是大多数SfM和基于周围环境是静止这一假设,既相机是运动的,但是目标是静止的。当面对移动物体时,整体系统重建效果显著降低。2、传统SfM基于目标为刚体的假设。3、个人对3D重建算法不是深入,SfM也许没有vSLAM技术热点,...转载 2019-08-15 18:25:43 · 1694 阅读 · 0 评论 -
基础光照-Phong 光照模型及其实现
1. Phong 光照模型 1.1 环境光照 Ambient Lighting 1.1.1 实现代码 1.2 漫反射光照 Diffuse Lighting 1.2.1 法向量 及实现代码 1.2.2 计算漫反射光照 1.2.3 法向量 注意事项 1.3 镜面光照 Specular Lighting 2. 总结1. Phong 光照模型现实...转载 2019-09-18 22:19:08 · 5372 阅读 · 0 评论 -
程序崩溃自动重启和未捕获到的异常写退出栈
项目开发中,经常会有这些情况同时发生:1. 项目工期很紧;2. 程序不定期崩溃;(崩溃间隔时间较长、且跟踪困难)因此,总想找到一种方法,在程序崩溃后,能自动重新启动,继续运行。带着这个目的,经过一段时间研究后,发现可以采取这样的方法:对整个程序的所有异常进行捕获,然后接管系统的异常处理机制,在用户自定义的异常处理中,重启程序进程。操作的关键在于:接管系统的异常处理。...转载 2019-03-23 14:33:59 · 632 阅读 · 0 评论 -
ROC,AUC最透彻的讲解(实例分析+matlab代码)
女朋友的毕业论文,做到了图像分割性能的评价,看到了需要用到AUC和ROC,请教大佬们,博后周师兄给出了他的解释和程序实现,非常感谢,后来查看了几个大V写的博客,感觉非常好,自己学习整理了一下,在这里总结给大家。A大牛说,面试的时i候,一句话说明AUC的本质和计算规则:AUC:一个正例,一个负例,预测为正的概率值比预测为负的概率值还要大的可能性。所以根据定义:我们最直观的有两种计算A...原创 2019-03-18 21:44:47 · 15668 阅读 · 6 评论 -
吐槽世界名校:只有我上不了的名校,没有不敢吐槽的名校
来源:淘漉校园编辑:学长对于准留学生来说,世界名校真的是可爱又可恨的角色啊!爱的时候,无论要拼多少分GPA、无论要考多少次托福、雅思、无论要写多少封文书,唯一所愿就是拿到他们的offer;恨的时候,有两种情况,一个是被拒了,一个是进去之后发现自己头发越来越少……可爱的一面我们也已经写得太多了,今天就来聊聊他们可恨的一面,一起来吐槽一下这些世界名校!哈佛大学“...转载 2019-02-23 14:33:57 · 271 阅读 · 0 评论 -
白天不懂夜的“白”?Google Pixel的“夜视功能”是怎样炼成的
【导读】随着智能手机的不断发展成熟,为了寻找差异化的厂商不断增加摄像头的数量。然而,摄像头的数量越多,就代表拍照的质量越好吗?Google Pixel 手机一直坚持单摄,虽然硬件不算顶尖,但是凭借着强大的算法,Pixel 手机的照相水平非常突出。上个月,Pixel 3 发布会的 Keynote 显示其暗光拍照的成像效果甚至完虐 iPhone XS,让人惊叹不已。近日,Google 又为自己...转载 2019-02-23 14:25:57 · 865 阅读 · 2 评论 -
各领域公开数据集下载
金融美国劳工部统计局官方发布数据房地产公司 Zillow 公开美国房地产历史数据沪深股票除权除息、配股增发全量数据,截止 2016.12.31上证主板日线数据,截止 2017.05.05,原始价、前复权价、后复权价,1260支股票深证主板日线数据,截止 2017.05.05,原始价、前复权价、后复权价,466支股票深证中小板日线数据,截止 2017.05.05,原始价、前复...转载 2019-02-22 16:50:31 · 993 阅读 · 0 评论 -
一篇不错的GPU入门博客
鉴于自己的毕设需要使用GPU CUDA这项技术,想找一本入门的教材,选择了Jason Sanders等所著的书《CUDA By Example an Introduction to General Purpose GPU Programming》。这本书作为入门教材,写的很不错。自己觉得从理解与记忆的角度的出发,书中很多内容都可以被省略掉,于是就有了这篇博文。此博文记录与总结此...转载 2018-11-02 21:51:11 · 1444 阅读 · 0 评论 -
SIFT算法详解(这篇对算法讲解的还是相当清楚的)
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd zddmail@gmail.com 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越。 1、SIFT综述尺度不变特征转换(Scale-invariant feature transform或SIFT...转载 2018-10-11 20:00:53 · 2826 阅读 · 2 评论 -
LBP特征原理
来源:http://blog.csdn.net/quincuntial/article/details/50541815一、LBP特征的背景介绍LBP指局部二值模式,英文全称:Local Binary Pattern,是一种用来描述图像局部特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点。它是由T. Ojala, M.Pietikäinen, 和 D. Harwood [1][2...转载 2018-09-17 21:27:11 · 436 阅读 · 0 评论 -
关于人工智能,我们到底在谈什么。
你可能是一名大学生你可能是一位高中生的家长也可能你的孩子还只是初中生、小学生但却都被人工智能这个玄幻的东西充斥着,你可能去百度过,可能去问过你认为懂的人,最后你知道的是:这个专业是计算机相关的、工资很高、学它很有前途,然后就要去学或让自己的孩子去学,但是人工智能(AI),你真的知道这个让世界爆炸的东西是什么了吗?仔细一想,你的脑子里边会有好多疑问:...原创 2018-09-14 08:25:11 · 544 阅读 · 0 评论 -
RBF径向基函数
一、径向基函数径向基函数是某种沿径向对称的标量函数,通常定义为样本到数据中心之间径向距离(通常是欧氏距离)的单调函数(由于距离是径向同性的)。RBF核是一种常用的核函数。它是支持向量机分类中最为常用的核函数。常用的高斯径向基函数形如: 其中,可以看做两个特征向量之间的平方欧几里得距离。x’为核函数中心,是一个自由参数,是函数的宽度参数 , 控制了函数的径向作用范围。。一种等价但更为简单的定义是设一...转载 2018-07-02 19:10:19 · 33566 阅读 · 2 评论 -
奇异值分解 SVD 红外小目标图像压缩 Matlab 低秩性分析
基于奇异值分解(SVD)的图像压缩 基于Matlab,将奇异值分解(SVD)用于图像的压缩,并同步显示奇异值的大小分布曲线、奇异值个数对压缩率的影响。对奇异值分解用于图像压缩整个过程的关键步骤都有图像记录。 完整代码如下:%%%%%%%%%%%%%%%%%%%%%%%%%%%修改第9行的图像路径即可,图像格式不限%2013.1.12 yangxin_szu%%%...转载 2019-03-09 17:23:53 · 1047 阅读 · 0 评论 -
基于单目视觉的三维重建算法综述
三维计算机视觉在计算机视觉是偏基础的方向,随着2010年阿凡达在全球热映以来,三维计算机视觉的应用从传统工业领域逐渐走向生活、娱乐、服务等,比如AR/VR,SLAM,自动驾驶等都离不开三维视觉的技术。三维重建包含三个方面,基于SFM的运动恢复结构,基于Deep learning的深度估计和结构重建,以及基于RGB-D深度摄像头的三维重建。 ...原创 2019-03-09 17:40:16 · 13280 阅读 · 1 评论 -
工业相机基础知识五十问
导言:最近在相机使用中遇到了点小麻烦,之前觉得没啥玩没在意,现在看来出来混迟早要还的,学习过程中查到的最全的工业相机问答,每个都是重点!1:工业相机的丢帧的问题是由什么原因引起的?丢帧表现:(一)相机预览模式下,无法以满帧的速度传输图像(二)触发拍照模式下,相机传输图像数量少于触发次数(触发频率应小于帧率)(三)图像处理软件处理的图像数量小于预期对应的丢帧...原创 2019-03-21 17:37:35 · 24118 阅读 · 2 评论 -
计算机视觉公司人工智能前16都有哪家公司?
作者:Dean0Winchester原文:https://blog.csdn.net/qq_38906523/article/details/77688294随着深度学习的不断发展,人工智能在未来几年将会出现井喷式的发展,而计算机视觉则是其重要的一个分支,计算机视觉是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传...转载 2019-03-07 22:13:17 · 6963 阅读 · 1 评论 -
计算机视觉和图像处理之间有什么区别?
人的眼睛有600万到700万个锥体细胞,其中包含三种被称为视蛋白的对颜色敏感的蛋白质之一。当光子击中这些视蛋白时,它们会改变形状,引发级联反应,产生电信号,进而将信息传递给大脑进行解读。整个过程是一个非常复杂的现象,并且使机器在人类层面上解释这一点一直是一个挑战。现代机器视觉系统背后的的核心动机在于模拟人类视觉,用于识别图案,面部以及将将2D图像转化为3D模型等。在概念层面,图像处理和计算...原创 2019-03-24 19:57:11 · 18471 阅读 · 0 评论 -
基于二维码的室内定位技术(二)——实现
作者介绍:周语馨 from 南京大学 to 英特尔亚太研发有限公司504849766@qq.com在《基于二维码的室内定位技术(一)——原理》中我已经讲解了计算α、β和z0的方法了,这里我就要实现它。大致的思路是这样的:(1)使用摄像头获取一帧;(2)识别摄像头中的二维码;(3)如果二维码的内容以“QRLocation,”开头,则继续第(4)步,否则返回第(1)步;(4)...原创 2019-03-16 15:27:12 · 8130 阅读 · 5 评论 -
基于二维码的室内定位技术(一)——原理
作者介绍:周语馨 from 南京大学 to 英特尔亚太研发有限公司504849766@qq.com原文地址:https://zhou-yuxin.github.io 哎,不知道怎么说呢。自从朱富帅丢下了这个锅,我就没有安宁过。大致说一下这个项目吧——一个小车,前面装了一个摄像头,当车看到一个二维码时,就要朝二维码开过去,而且需要保证最后是正对二维码中心顶上去。这个需求来自于导师要的...原创 2019-03-16 15:25:32 · 11653 阅读 · 7 评论 -
cvpr2019(Papers/Codes/Project/Paper reading)
引言:由于多数链接难以编辑进文章中,现将资源的链接分享给需要的同学,包括论文,代码,相关工程,论文解读等,而且文章是按研究方向分类整理的,下面为内容部分截图,可以直接点击http://bbs.cvmart.net/topics/302/cvpr2019paper#12,进入资源页面。---------交流群--------(1)公众号的交流群。大家可...原创 2019-03-16 15:14:39 · 7643 阅读 · 0 评论 -
matlab imshow显示图像详解
最近在用octave (类似于matlab的计算软件, 函数和matlab一致) 写程序的时候, 在显示图像和保存图像的时候遇到了一些小问题, 所以简单的总结了一下。本文用的图像为灰度图像:imread() 返回的图像类型是uint8类型, 这时用imshow显示图像的时候, imshow会认为输入矩阵的范围在0-255, 如果imshow的参数为double类型的,那么imshow认...转载 2019-03-11 21:31:47 · 39454 阅读 · 7 评论 -
二值图像连通域标记之全面分析(代码实践)
一、前言二值图像,顾名思义就是图像的亮度值只有两个状态:黑(0)和白(255)。二值图像在图像分析与识别中有着举足轻重的地位,因为其模式简单,对像素在空间上的关系有着极强的表现力。在实际应用中,很多图像的分析最终都转换为二值图像的分析,比如:医学图像分析、前景检测、字符识别,形状识别。二值化+数学形态学能解决很多计算机识别工程中目标提取的问题。二值图像分析最重要的方法就是连通区域标记,它是...原创 2019-03-11 21:26:25 · 1740 阅读 · 0 评论