二叉树的存储并非一个简单的问题. 引用 (指针) 是无法存储到文件里面的.
完全满二叉树的角度广度优先遍历的角度来考虑这个问题: 每个节点都有一个 name 及其在二叉树中的位置. 令根节点的位置为 0; 则第 2 层节点的位置依次为 1 至 2; 第 3 层节点的位置依次为 3 至 6. 以此类推.
空使用 0 来表示, 可以用一个向量来存储:
[a, b, c, 0, d, e, 0, 0, 0, f, g]
优点: 仅需要一个向量, 简单直接.
缺点: 对于实际的二叉树, 很多子树为空, 导致大量的 0 值.
刘知鑫指出: 应使用压缩存储方式, 即将节点的位置和值均存储. 可表示为两个向量:
[0, 1, 2, 4, 5, 9, 10]
[a, b, c, d, e, f, g]
由于递归程序涉及变量的作用域问题 (额, 这个真的有点头疼), 我们需要使用层次遍历的方式, 获得以上的几个向量. 为此, 需要用到队列. 我们先灌点水, 把队列的代码再写一遍, 但这次装的是对象 (的引用).
package java21to30;
public class D22_CircleObjectQueue {
public static final int total = 10;
Object[] data;
int head;
int tail;
public static void main(String[] args) {
D22_CircleObjectQueue tempQueue = new D22_CircleObjectQueue();
}
public D22_CircleObjectQueue() {
data = new Object[total];
head = 0;
tail = 0;
}
public void enqueue(Object paraValue) {
if ((tail + 1) % total == head) {
System.out.println("Queue full.");
return;
}
data[tail % total] = paraValue;
tail++;
}
public Object dequeue() {
if (head == tail) {
return null;
}
Object resultValue = data[head];
head++;
return resultValue;
}
public String toString() {
String resultString = "";
if (head == tail) {
return "empty";
}
for (int i = head; i < tail; i++) {
resultString += data[i % total] + ", ";
}
return resultString;
}
}