流程的三大概念:分级、分类、分层

b841972c41d6eec07b469dd235271d6c.gif

更多专业文档请访问 www.itilzj.com

现在很多企业在搞流程管理,都会安排各个部门、各个岗位将自己做的事情画成流程图。等到把布置的工作收集上来一看,企业竟然有上千个流程。

看上去企业的业务很复杂,其实里面重复性的内容很多。特别是跨部门的同一件事情,比如一个单位送图纸、对另外一个单位来说就是取图纸,事情还是那一件,只是看事情的角度不同,结果两个部门“各自为政”,弄出两个来。重复描述且不说,因为视角不同,对这一流程节点的交接时间、标准等会存在理解的差异,也就是我们常说的流程边界不清楚。原本是要通过绘制流程图,将上下左右的关联流程、业务节点给梳理清楚的,这下反而更复杂了。

所以,要想流程描述好,界定流程边界很重要。而要确定流程边界,首先要将企业所有的流程名称组织起来,形成一个流程清单的树形结构。

其实,企业的流程从来都不是简单的树形或者层次结构,而是一个多维度的网络结构。比如,常态化的工序加工质量检验流程,当发现了产品缺陷时,除了通过本流程处理好这个产品的质量缺陷外,还可能触发一个工艺改进流程,或者供应商质量评价和处理流程。这三个流程的流向、处理进度、完成标准正如其目标不同一样,是有很大差别的。

流程描述的一个难点在于,要在一个单一的树形结构中,同时表述这种具有网络结构的流程清单。这就好比用单一的关系型数据库来表示复杂的数据结构一样,令人难懂。这里先从最简单的流程分级概念说起。

流程分级可以简单理解为将不同颗粒度的流程按照粗细分为不同的级别。不同级别的流程之间是有关系的。比如世界地图是一个分级,中国地图是另一个分级,江苏省或者南京市地图又分别是一个级,这就叫分级。

那分类是什么?

同一个分级也可以有不同的分类,比如,同样是中国地图,可以有全国高速公路交通图,也可以是全国海拔高度分布图,或者绿色植被覆盖图。他们之间是同一级别的不同分类。

不同的分级之间,可能会采用不同的分类。比如企业的采购流程,作为企业的主营业务流程,其下可以分为采购申请、采购询价、采购合同订立、采购入库、采购付款等子流程,也就是分为五个下级流程。而分类可能是说,同样的采购申请流程,可以根据采购物资的性质不同,分为固定资产采购申请流程、原材料采购申请流程、办公用品采购申请流程等三个分类,因为各种分类涉及的采购申请对象、审批人都不尽相同。

从上面的例子也可以看出,分级分类流程的是两个属性维度,相互关联又有区别。那么如何在同一个流程清单的树形结构中同时清楚地表述这两者之间的差别呢?流程管理顾问有一套方法,配合其他概念和规则,可以很好地解决流程描述边界的问题,这里不再细说。

最不容易理解的概念是分层。简单想,只要有上下或者左右关系,都可以叫做分层。如果这样理解,就与分级、分类这两个概念没有区别了。其实,分层这个词的关键不是在讲第几级或者第几类这样的“绝对值”,它强调的是层次性和相对性,它与流程命名息息相关。比如,采购审批流程,既可能是采购管理流程的下一个层次,也可能包含了多种类型的采购物资分类。关键是这些分层次、分类别的工作项(流程的另外一个基本概念),既可以用子流程定义,也可以用一个流程图中的活动项来解释。

咨询公司在总结和提炼流程管理的方法中,特别注重对概念、术语的定义和澄清。因此,区分流程的分级、分类、分层这三个既相互独立、又有区别的概念,就变得相当重要。

下面简单介绍一般企业与流程的分级、分类、分层方法。由于不同性质、不同规模的企业,甚至不同发展阶段的同一家企业,其流程边界的定义可以不同,这里只简单给出参考,实际的划分原则和方法需要与流程顾问探讨。

通常,企业的一级流程称之为主价值链流程,就一张图。二级流程是大的业务版块分类图。在这里我们叫大的版块,而不叫模块,这是有别于软件和业务模块的。每个公司对一、二级流程的描述方式不太一样,可以通过图上版块的位置、颜色和大小来区分。比如投资性集团公司,他们就会与经营性公司有不同的二级流程结构。再者,同一个行业里面的企业,其经营和业务的重点是不一样的,就以一级流程的主价值链来说,有的企业重在设计,有的则重在制造,侧重点不同。

业务流程描述中最有价值的,也是最重要的是三级流程。三级流程被定义为跨部门的、跨职能的流程。三级流程细化到部门,涉及了部门的具体岗位,但不涉及岗位的具体作业。

与三级流程强调跨职能、跨部门衔接不同,四级流程开始关注部门内部的再细化分工,或者说是为了完成上级流程目的,而需要操作者更细化的作业标准(也叫SOP)。

五、六级流程,我们通常定义为软件功能和单个操作动作的流程。

在企业流程应用中,上述分级定义是相对的。咨询公司一般将1-2级、3-4级、5-6级分别归为一层,形成企业流程的三层架构:决策层、管理层和操作层。

这也就解释了很多企业经常提出的一个普遍性的问题:那就是咨询顾问和软件公司在流程梳理上有什么区别?他们都会涉及业务流程,为什么还有BPM、ERP流程之分,为什么他们之间的工作不一样?

5-6级流程是以软件功能为载体,实施顾问思考的方向是先软件功能再企业流程,也可以说是用ERP工具达成管理目标。

3-4级流程是以管理目标为载体,咨询顾问思考的方向是先企业跨部门管理问题或者业务需求,再考虑企业流程如何达成目标,也可以说是确定管理目标后选择适合的流程。

最后要说的是,流程的分级、分类、分层要结合其应用,不能孤立地使用。遵从这三个概念,通过流程清单,可以大幅度地减少交叉、重复的流程(相比重复,流程清单交叉更难厘清)。

用一个实际的企业案例来说,3000多人的企业,有近300个部门和岗位,整理出7000余个单体工作项,最后可以合并为不到200个的业务流程,并且大部分流程只分到3级流程,部分涉及到4级。

怎么切分可以做到企业流程数量大幅度缩减?这是很多尝试进行流程梳理的企业都头痛的一件事情。分级、分类、分层的通用原则是什么?在家居建材业、在装备制造业或者消费品行业,流程归口、归类分别有什么不同的考虑因素?是以流程起点作为分级依据还是以业务性质亦或主体责任作为分割标准?这些都是值得细说的好问题。

福利

圈子构建、学习资料获取 1000+份重磅材料已分享【ITIL4 PPT教材/试题/视频/信息化/IT运维管理各类文档解决方案报告等】、ITIL4培训视频已开放扫码加入社群观看学习哦

随着材料不断丰富社群会不定期涨价早加入更优惠

03c636f04360bf9794d1b0bc9dd5a5eb.png

公众号发送如下关键字获取免费资料:

1.价值58元/套IT管理体系文档--回复"干货"

2.最新ITIL4中文教材--回复"ITIL教材"

免责声明:

本公众号部分分享的资料来自网络收集和整理,所有文字和图片版权归属于原作者所有,且仅代表作者个人观点,与ITIL之家无关,文章仅供读者学习交流使用,并请自行核实相关内容,如文章内容涉及侵权,请联系后台管理员删除。

abdd929b6c9c955dfbe3eec3f1af08a0.png

更多推荐

           

智能运维在金融核心领域的研究与应用

ITIL 4 讲解:事态、事件、灾难流程如何界定?

当我们建设CMDB时我们该做什么

服务器 12 种基本故障+排查方法

管理规范、业务流程与岗位职责的含义及关系

PPT | 企业数字化转型规划设计(107页)

ITIL与DevOps

CMDB与DevOps的集成

ITIL4认证测试题及答案(收藏学习)

ITIL4培训系列之变更支持流程和实践讲解

       
<think>好的,用户想了解如何使用机器学习方法对数据进行分类分级。首先我需要明确这两个概念的区别。分类通常是指将数据为不同的类别,比如垃圾邮件检测。而分级可能是指将数据按等排序,比如信用评。用户可能希望知道如何应用机器学习技术来完成这两类任务。 接下来,我得回顾常见的分类方法。监督学习中的分类算法,比如逻辑回归、决策树、随机森林、支持向量机(SVM)和神经网络都是常用的。对于分级任务,可能需要使用回归模型或者有序分类方法,比如有序逻辑回归或者基于树的方法。此外,分级可能涉及到将数据为不同的层次,比如高、中、低风险等。 然后,我需要考虑数据预处理的重要性。数据清洗、特征工程、标准化、处理缺失值等步骤都是关键。特别是文本数据,可能需要自然语言处理技术,比如词袋模型、TF-IDF或者词嵌入。这里用户提到的引用[4]中提到了文本析和隐马尔可夫模型,这可能是一个相关点,可以引用。 接下来是模型选择。不同的算法适用于不同的场景。例如,对于高维数据,SVM和神经网络可能表现更好;而对于结构化数据,树模型如随机森林或梯度提升树可能更合适。需要解释这些选择的原因,帮助用户理解何时使用哪种方法。 模型评估也是重要的一环。分类任务常用准确率、精确率、召回率、F1值、ROC-AUC等指标。而分级任务可能需要使用均方误差(MSE)、平均绝对误差(MAE)或者特定于排序的指标,如Spearman相关系数。这里需要提到交叉验证和超参数调优,如引用[3]中的评估和反思部,可以引用相关引用。 另外,用户可能对实际应用案例感兴趣。例如,在文本分类中使用朴素贝叶斯或深度学习模型,或者在信用评中使用逻辑回归或XGBoost进行分级。引用[4]中的Web异常检测案例,可以说明如何将NLP技术应用于分类任务,这需要强调。 还要考虑类别不平衡问题,这在分类任务中很常见。解决方法包括重采样(过采样、欠采样)、使用代价敏感学习或者集成方法。引用[2]提到的分层抽样可能在这里有用,确保数据区时的代表性,可以引用。 最后,我需要总结整个流程,从数据预处理到模型选择、训练、评估和优化,帮助用户形成系统化的理解。同时,根据用户提供的引用,适时插入引用标记,比如在提到数据区时引用[2],评估时引用[3],文本析时引用[4]等。 可能还需要生成相关问题,引导用户进一步探索。比如,如何处理不平衡数据,如何选择特征工程方法,或者深度学习在分类中的应用等。这些问题应该覆盖用户可能感兴趣的后续步骤。</think>### 机器学习数据分类分级技术详解 #### 一、核心概念 数据分类(Classification)指将样本配到预定义类别,例如识别邮件是否为垃圾邮件[^1]。数据分级(Grading)则是对数据进行有序分层,如信用评为A/B/C/D等,这类任务常使用$Y \in \{1,2,...,k\}$的有序离散变量表示。 #### 二、技术实现流程 1. **数据预处理** - 特征标准化:$$x' = \frac{x - \mu}{\sigma}$$ 消除量纲影响 - 文本向量化:采用TF-IDF或Word2Vec(引用[4]中HMM方法适用于序列数据) - 分层抽样:保持类别比例(引用[2]) 2. **分类模型选择** - 经典算法: - 逻辑回归:$P(y=1|x) = \frac{1}{1+e^{-(w^Tx+b)}}$ - 随机森林:通过多棵决策树集成降低过拟合 - 深度模型: - CNN:适用于图像分类 - LSTM:处理时序数据分类 3. **分级方法** ```python from sklearn.linear_model import LogisticRegression # 有序分类示例 model = LogisticRegression(multi_class='multinomial', solver='lbfgs') ``` #### 三、关键问题处理 1. **类别不平衡** - 使用SMOTE过采样技术:生成少数类合成样本 - Focal Loss:$$FL(p_t) = -\alpha_t(1-p_t)^\gamma \log(p_t)$$ 2. **模型评估** | 任务类型 | 评估指标 | |----------|--------------------------| | 分类 | ROC-AUC, F1-Score | | 分级 | Quadratic Weighted Kappa | #### 四、典型应用场景 1. 医疗诊断分类:基于患者特征预测疾病类型 2. 金融信用分级:通过还款记录划信用等(引用[3]中的评估方法可应用于此)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值