找寻二叉树中两个节点的公共父节点中最近的那个节点
情况1. 节点只有left/right,没有parent指针,root已知 情况2. root未知,但是每个节点都有parent指针 情况3. 二叉树是个二叉查找树,且root和两个节点的值(a, b)已知 |
虽然情况一是第一个情况,但是看上去比较复杂,我们放到最后来说,先从第二个情况开始说。
10
/ \
6 14
/ \ / \
4 8 12 16
/\
3 5
画一个二叉树来做例子。如果我们要找3和8这两个节点的公共父亲节点,我们的做法是首先找到3到根节点的路劲,然后找到8到根节点的路径。
10
// \
6 14
/ \ / \
4 8 12 16
/ \
3 5
3的路径用红色表示,8的用绿色表示,可以看到, 这里的问题实际上是另一个我们熟知的问题,有2个相交的单链表,找出它们的相交点!
只要把这个二叉树的图片倒过来看,或者把脖子倒过来看就知道了:)那个方法也是传统的求出linkedList A的长度lengthA, linkedList B的长度LengthB。然后让长的那个链表走过abs(lengthA-lengthB)步之后,齐头并进,就能解决了。
- int getLength (bstNode* pNode)
- {
- int length = 0;
- bstNode* pTemp = pNode;
- while (pTemp)
- {
- length ++ ;
- pTemp = pTemp->pParent;
- }
- return length;
- }
- bstNode* findLCACase2(bstNode* pNode1, bstNode* pNode2)
- {
- int length1 = getLength(pNode1);
- int length2 = getLength(pNode2);
- // skip the abs(length1-length2)
- bstNode* pIter1 = NULL;
- bstNode* pIter2 = NULL;
- int k=0;
- if (length1>=length2)
- {
- bstNode* pTemp = pNode1;
- while (k++<length1-length2)
- {
- pTemp = pTemp->pParent;
- }
- pIter1 = pTemp;
- pIter2 = pNode2;
- }
- else
- {
- bstNode* pTemp = pNode1;
- while (k++<length2-length1)
- {
- pTemp = pTemp->pParent;
- }
- pIter1 = pNode1;
- pIter2 = pTemp;
- }
- while (pIter1&&pIter2&&pIter1!= pIter2)
- {
- pIter1 = pIter1->pParent;
- pIter2 = pIter2->pParent;
- }
- return pIter1;
- }
其他地方copy的一个程序:
- template<typename T>
- struct TreeNode1
- {
- T data;
- TreeNode1* pLChild;
- TreeNode1* pRChild;
- };
- #include <vector>
- // 找寻节点路径,倒序,根节点在最后
- template<typename T>
- bool FindNodePath(TreeNode1<T>* pRoot, TreeNode1<T>* p, std::vector<TreeNode1<T>*>& path)
- {
- if(pRoot == NULL)
- return false;
- if(p == pRoot)
- {
- path.push_back(pRoot);
- return true
- }
- else if(FindNodePath(pRoot->pLChild, p, path))
- {
- path.push_back(pRoot->pLChild);
- return true;
- }
- else if(FindNodePath(pRoot->pRChild, p, path))
- {
- path.push_back(pRoot->pRChild);
- return true;
- }
- return false;
- }
- template<typename T>
- TreeNode1<T>* FindNearestParentNode(TreeNode1<T>* pRoot, TreeNode1<T>* p1, TreeNode1<T>* p2)
- {
- std::vector<TreeNode1<T>*> path1, path2;
- bool bFind = FindNodePath(pRoot, p1, path1);
- bFind &= FindNodePath(pRoot, p2, path2);
- if(!bFind)
- return NULL;
- TreeNode1<T>* pReturn = NULL;
- size_t minSize = path1.size() > path2.size() ? path2.size() : path1.size();
- // 起始点设在可能出现共同节点的部分的起点
- for(size_t i = path1.size() - minSize, j = path2.size()-minSize; i < path1.size() && j < path2.size(); ++i, ++j)
- {
- if(path1[i] == path2[j])
- {
- pReturn = path1[i];
- }
- }
- return pReturn;
- }
情况三,如果是个二叉搜索树,而且root和a, b已知,我们这个case假设a,b=3,8。从知道根这个条件我们很自然联想到递归(当然不递归也可以)地往下找。关键是收敛条件,什么情况下可以判断出当然检查的这个节点是最近父亲节点呢?其实从这个例子已经可以看出一些端倪了,如果当前访问的节点比a,b来的都小,肯定不行。如果比a,b都大,也不行。那也就是说,这个节点只有在a<=node<=b的区间内才成立(我们假定a<b这里)。这样的问题,网上广为流传着类似的代码:
- #include <vector>
- bool nodePath (bstNode* pRoot, int value, std::vector<bstNode*>& path)
- {
- if (pRoot==NULL) return false;
- if (pRoot->data!=value)
- {
- if (nodePath(pRoot->pLeft,value,path))
- {
- path.push_back(pRoot);
- return true;
- }
- else
- {
- if (nodePath(pRoot->pRight,value,path))
- {
- path.push_back(pRoot);
- return true;
- }
- else
- return false;
- }
- }
- else
- {
- path.push_back(pRoot);
- return true;
- }
- }
- bstNode* findLCACase1(bstNode* pNode, int value1, int value2)
- {
- std::vector<bstNode*> path1;
- std::vector<bstNode*> path2;
- bool find = false;
- find |= nodePath(pNode, value1, path1);
- find &= nodePath(pNode, value2, path2);
- bstNode* pReturn=NULL;
- if (find)
- {
- int minSize = path1.size()>path2.size()?path2.size():path1.size();
- int it1 = path1.size()-minSize;
- int it2 = path2.size()-minSize;
- for (;it1<path1.size(),it2<path2.size();it1++,it2++)
- {
- if (path1[it1]==path2[it2])
- {
- pReturn = path1[it1];
- break;
- }
- }
- }
- return pReturn;
- }
递归的方法:
只要找到这样一个节点:
已知的两个节点一个在它的左边子树,一个在它的右边子树;
或者这个节点就是已知的两个节点中的一个,而另一个恰好在它的下面。
- TREE* CommonFather(TREE *root, TREE *A, TREE *B)
- {
- if(root == NULL)
- return root;
- if(root == A)//如果找到A,则后面的都不再找了,如果其他分支没找到B,则B必定在A下面
- return A;
- if(root == B)//同上
- return B;
- TREE *leftChild == NULL;
- TREE *rightChild == NULL;
- leftChild = CommonFather(root->left, A, B);//返回A,B或结果
- rightChild = CommonFather(root->right, A, B);//返回A,B或结果
- if(leftChild != NULL && rightChild != NULL)//如果都不为空,则必定一个是A,一个是B;
- return root;
- if(leftChild != NULL)//如果不为空,则必定是A或B或结果;
- return leftChild;
- if(rightChild != NULL)
- return rightChild;//如果不为空,则必定是A或B或结果;
- }
令:
先比较两结点的深度,把大的先往上推,直到两结点深度一致,然后它们两就是同辈儿啦,不是兄弟就是表兄弟,往上一起推算,一直推到共同的第一个老子。
求a b的最近的父节点,首先求根节点到a的路径字符串,再求根节点到b的路径字符串,不用管树的构造有没有father pointer。