二叉树的公共节点

找寻二叉树中两个节点的公共父节点中最近的那个节点

 

情况1. 节点只有left/right,没有parent指针,root已知

情况2. root未知,但是每个节点都有parent指针

情况3. 二叉树是个二叉查找树,且root和两个节点的值(a, b)已知

 

 

虽然情况一是第一个情况,但是看上去比较复杂,我们放到最后来说,先从第二个情况开始说。

                                             10

                                          /       \
                                        6         14
                                      /  \       /   \
                                   4   8   12   16

                                   /\

                                3   5

画一个二叉树来做例子。如果我们要找3和8这两个节点的公共父亲节点,我们的做法是首先找到3到根节点的路劲,然后找到8到根节点的路径。

                                             10

                                          /     \
                                        6         14
                                       / \        /  \
                                    4   8   12   16

                                   \

                               3   5

3的路径用红色表示,8的用绿色表示,可以看到, 这里的问题实际上是另一个我们熟知的问题,有2个相交的单链表,找出它们的相交点!

只要把这个二叉树的图片倒过来看,或者把脖子倒过来看就知道了:)那个方法也是传统的求出linkedList A的长度lengthA, linkedList B的长度LengthB。然后让长的那个链表走过abs(lengthA-lengthB)步之后,齐头并进,就能解决了。

  1. int getLength (bstNode* pNode)  
  2. {     
  3.     int length = 0;  
  4.     bstNode* pTemp = pNode;  
  5.     while (pTemp)  
  6.     {  
  7.         length ++ ;  
  8.         pTemp = pTemp->pParent;  
  9.     }  
  10.     return length;  
  11. }  
  12. bstNode* findLCACase2(bstNode* pNode1, bstNode* pNode2)  
  13. {  
  14.     int length1 = getLength(pNode1);  
  15.     int length2 = getLength(pNode2);  
  16.       
  17.     // skip the abs(length1-length2)  
  18.     bstNode* pIter1 = NULL;  
  19.     bstNode* pIter2 = NULL;  
  20.     int k=0;  
  21.     if (length1>=length2)  
  22.     {  
  23.         bstNode* pTemp = pNode1;  
  24.         while (k++<length1-length2)  
  25.         {  
  26.             pTemp = pTemp->pParent;   
  27.         }  
  28.         pIter1 = pTemp;  
  29.         pIter2 = pNode2;  
  30.     }  
  31.     else  
  32.     {  
  33.         bstNode* pTemp = pNode1;  
  34.         while (k++<length2-length1)  
  35.         {  
  36.             pTemp = pTemp->pParent;   
  37.         }  
  38.         pIter1 = pNode1;  
  39.         pIter2 = pTemp;  
  40.     }  
  41.       
  42.     while (pIter1&&pIter2&&pIter1!= pIter2)  
  43.     {  
  44.         pIter1 = pIter1->pParent;  
  45.         pIter2 = pIter2->pParent;  
  46.     }  
  47.     return pIter1;  
  48. }  

其他地方copy的一个程序:

  1. template<typename T>  
  2. struct TreeNode1  
  3. {  
  4.  T data;  
  5.  TreeNode1* pLChild;  
  6.  TreeNode1* pRChild;  
  7. };  
  8.   
  9. #include <vector>  
  10.   
  11. // 找寻节点路径,倒序,根节点在最后  
  12. template<typename T>  
  13. bool FindNodePath(TreeNode1<T>* pRoot, TreeNode1<T>* p, std::vector<TreeNode1<T>*>& path)  
  14. {  
  15.  if(pRoot == NULL)  
  16.   return false;  
  17.  if(p == pRoot)  
  18.  {  
  19.   path.push_back(pRoot);  
  20.   return true  
  21.  }  
  22.  else if(FindNodePath(pRoot->pLChild, p, path))  
  23.  {  
  24.   path.push_back(pRoot->pLChild);  
  25.   return true;  
  26.  }  
  27.  else if(FindNodePath(pRoot->pRChild, p, path))  
  28.  {  
  29.   path.push_back(pRoot->pRChild);  
  30.   return true;  
  31.  }  
  32.  return false;  
  33. }  
  34. template<typename T>  
  35. TreeNode1<T>* FindNearestParentNode(TreeNode1<T>* pRoot, TreeNode1<T>* p1, TreeNode1<T>* p2)  
  36. {  
  37.  std::vector<TreeNode1<T>*> path1, path2;  
  38.  bool bFind = FindNodePath(pRoot, p1, path1);  
  39.  bFind &= FindNodePath(pRoot, p2, path2);  
  40.  if(!bFind)  
  41.   return NULL;  
  42.   
  43.  TreeNode1<T>* pReturn = NULL;  
  44.  size_t minSize = path1.size() > path2.size() ? path2.size() : path1.size();  
  45.   
  46. // 起始点设在可能出现共同节点的部分的起点  
  47.  for(size_t i = path1.size() - minSize, j = path2.size()-minSize; i < path1.size() && j < path2.size(); ++i, ++j)  
  48.  {  
  49.   if(path1[i] == path2[j])  
  50.   {  
  51.    pReturn = path1[i];  
  52.   }  
  53.  }  
  54.   
  55.  return pReturn;  
  56. }  


情况三,如果是个二叉搜索树,而且root和a, b已知,我们这个case假设a,b=3,8。从知道根这个条件我们很自然联想到递归(当然不递归也可以)地往下找。关键是收敛条件,什么情况下可以判断出当然检查的这个节点是最近父亲节点呢?其实从这个例子已经可以看出一些端倪了,如果当前访问的节点比a,b来的都小,肯定不行。如果比a,b都大,也不行。那也就是说,这个节点只有在a<=node<=b的区间内才成立(我们假定a<b这里)。这样的问题,网上广为流传着类似的代码:

  1. #include <vector>  
  2. bool nodePath (bstNode* pRoot, int value, std::vector<bstNode*>& path)  
  3. {  
  4.     if (pRoot==NULL) return false;  
  5.     if (pRoot->data!=value)  
  6.     {  
  7.         if (nodePath(pRoot->pLeft,value,path))  
  8.         {  
  9.             path.push_back(pRoot);  
  10.             return true;  
  11.         }  
  12.         else  
  13.         {  
  14.             if (nodePath(pRoot->pRight,value,path))  
  15.             {  
  16.                 path.push_back(pRoot);  
  17.                 return true;  
  18.             }  
  19.             else  
  20.                 return false;  
  21.         }  
  22.     }  
  23.     else  
  24.     {  
  25.         path.push_back(pRoot);  
  26.         return true;  
  27.     }  
  28. }  
  29. bstNode* findLCACase1(bstNode* pNode, int value1, int value2)  
  30. {  
  31.     std::vector<bstNode*> path1;  
  32.     std::vector<bstNode*> path2;  
  33.     bool find = false;  
  34.     find |= nodePath(pNode, value1, path1);  
  35.     find &= nodePath(pNode, value2, path2);  
  36.     bstNode* pReturn=NULL;  
  37.     if (find)  
  38.     {  
  39.         int minSize = path1.size()>path2.size()?path2.size():path1.size();  
  40.         int it1 = path1.size()-minSize;  
  41.         int it2 = path2.size()-minSize;  
  42.         for (;it1<path1.size(),it2<path2.size();it1++,it2++)  
  43.         {  
  44.             if (path1[it1]==path2[it2])  
  45.             {  
  46.                 pReturn = path1[it1];  
  47.                 break;  
  48.             }  
  49.         }  
  50.     }  
  51.     return pReturn;  
  52. }  

 

递归的方法:

只要找到这样一个节点:

已知的两个节点一个在它的左边子树,一个在它的右边子树;

或者这个节点就是已知的两个节点中的一个,而另一个恰好在它的下面。

  1. TREE* CommonFather(TREE *root, TREE *A, TREE *B)  
  2. {  
  3.     if(root == NULL)  
  4.         return root;  
  5.     if(root == A)//如果找到A,则后面的都不再找了,如果其他分支没找到B,则B必定在A下面  
  6.         return A;  
  7.     if(root == B)//同上  
  8.         return B;  
  9.     TREE *leftChild == NULL;  
  10.     TREE *rightChild == NULL;  
  11.     leftChild = CommonFather(root->left, A, B);//返回A,B或结果  
  12.     rightChild = CommonFather(root->right, A, B);//返回A,B或结果  
  13.     if(leftChild != NULL && rightChild != NULL)//如果都不为空,则必定一个是A,一个是B;  
  14.         return root;  
  15.     if(leftChild != NULL)//如果不为空,则必定是A或B或结果;  
  16.         return leftChild;  
  17.     if(rightChild != NULL)  
  18.         return rightChild;//如果不为空,则必定是A或B或结果;  
  19. }  

 

令:

先比较两结点的深度,把大的先往上推,直到两结点深度一致,然后它们两就是同辈儿啦,不是兄弟就是表兄弟,往上一起推算,一直推到共同的第一个老子。

 

求a b的最近的父节点,首先求根节点到a的路径字符串,再求根节点到b的路径字符串,不用管树的构造有没有father pointer。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值