时间限制: 1 Sec 内存限制: 32 MB
提交: 1029 解决: 443
[提交][状态][讨论版][命题人:外部导入]
题目描述
有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
输入
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。
输出
输出不同的选择物品的方式的数目。
样例输入
2
12
28
3
21
10
5
样例输出
1
0
自己想的就是循环。。感觉非常麻烦,最后还是看了别人的解法,下次再重做吧
#include <cstdio>
int n,t[30];
int f(int sum,int n)
{
if(sum == 0)
return 1;
if(n==0)
return 0;
return f(sum - t[n],n-1) + f(sum,n-1);
}
int main()
{
while(scanf("%d",&n) != EOF)
{
for(int i = 1;i<=n;i++)
{
scanf("%d",&t[i]);
}
int a = 0;
a=f(40,n);
printf("%d\n",a);
}
return 0;
}
在这里插入代码片