无人机智能鹰眼守护电动车出行安全,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建无人机航拍道路交通场景下电动车不带头盔、违规载人和安装遮阳棚智能检测识别系统

电动自行车作为我国城市和乡村广泛使用的交通工具,因其轻便、快捷、经济等优点,深受大众喜爱。然而,近年来电动自行车引发的交通事故数量也居高不下,给社会和家庭带来了巨大的损失。数据显示,电动自行车事故死亡人数中,约76%因颅脑损伤致死,而未佩戴安全头盔的驾乘人员死亡风险是佩戴者的3.9倍。此外,违规载人、加装遮阳棚等行为也严重影响了骑行安全。

传统监管模式的局限性
传统的交通监管主要依赖于交警的现场执法,但这种方式存在诸多局限性。一方面,交警的精力和时间有限,难以做到全面覆盖和实时监管;另一方面,受工作时长和天气等因素影响,无法实现全天候、及时有效的管理。尤其是在早晚高峰时段和复杂路况下,违规行为难以得到及时纠正,导致事故隐患依然存在。

AI与无人机结合的创新应用
随着智能化技术的快速发展,越来越多的传统行业开始引入AI技术来提升效率和安全性。在电动自行车交通监管领域,无人机技术的应用为解决传统监管难题提供了新的思路。无人机具有机动性强、覆盖范围广、成本低等优点,能够实现对指定区域的自动巡航和实时监控。面对传统交通管理模式的局限,智能化技术的快速发展为我们提供了新的解决方案。特别是AI技术与无人机的结合,为电动自行车交通管理带来了革命性的变化。无人机以其便捷、机动性强的特点,能够在指定区域内进行自动巡航,实时采集交通数据,并通过众包平台完成高质量的数据标注处理。基于这些数据,我们可以开发构建场景化的检测识别模型,实现电动自行车违规行为的精准识别。

1. 数据采集与模型构建
无人机在巡航过程中,能够捕捉到道路上的实时画面,包括电动自行车的行驶状态、骑行者是否佩戴头盔、是否存在违规载人或安装遮阳棚等情况。这些数据经过专业标注后,被用于训练AI检测识别模型。模型通过深度学习算法,能够准确识别出各种违规行为,为后续的精准管理提供数据支持。

2. 实时监测与预警
部署在无人机机载算力设备上的检测识别模型,能够在无人机巡航过程中实时分析拍摄到的图像,快速识别出违规行为。一旦发现违规情况,无人机可以立即将相关信息发送到中央端,中央端则根据违规位置自动将信息推送给最临近的交警,实现快速响应处理。这种实时监测与预警机制,大大提高了交通管理的效率和精准度。

3. 重点区域巡航
在道理卡口、红绿灯等关键位置,无人机可以进行重点巡航,多次拍摄并分析图像,确保这些区域的交通秩序得到有效维护。同时,通过大数据分析,还可以预测交通拥堵趋势,提前采取措施进行疏导,进一步优化交通管理。

本文正是在这样的背景思考下想要趁着闲暇时间从实验性质的角度探索开发构建智能化的检测识别系统,在前文中我们已经进行了相关的开发实践,感兴趣的话可以自行移步阅读即可:

《无人机智能鹰眼守护电动车出行安全,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建无人机航拍道路交通场景下电动车不带头盔、违规载人和安装遮阳棚智能检测识别系统》

本文主要是想要基于YOLOv5系列的模型来进行相应的开发实践,首先看下实例效果:

接下来看下实例数据:

YOLOv5(You Only Look Once version 5)是YOLO系列目标检测算法的经典版本,由Ultralytics团队于2020年发布。其构建原理主要基于深度学习技术,通过构建神经网络模型来实现对图像中目标的快速、准确检测。

YOLOv5的模型结构主要由以下几个核心部分组成:

输入端:

Mosaic图像增强:通过组合多个不同的图像来生成新的训练图像,增加数据集的多样性,提高模型的鲁棒性。
自适应锚框计算:自动计算出最适合输入图像的锚框参数,提高目标检测的精度。
自适应图片缩放:根据目标尺度自适应地缩放输入图像的尺寸,以适应不同尺度目标的检测。
Backbone层:

通常采用CSPDarknet53作为主干网络,具有较强的特征提取能力和计算效率。
Focus结构:用于特征提取的卷积神经网络层,对输入特征图进行下采样,减少计算量和参数量。
Neck网络:

主要负责跨层特征融合和处理,提升模型对小目标的检测效果。常见的结构包括FPN(特征金字塔网络)和PANet等。
Head网络:

包含预测层,用于生成目标检测框和类别置信度等信息。
损失函数:

采用常见的目标检测损失函数,如IOU损失、二值交叉熵损失等,以及Focal Loss等用于缓解类别不平衡问题的损失函数。
二、技术亮点

单阶段检测:YOLOv5在单阶段内完成了目标的定位和分类,大大简化了检测流程,提高了检测速度。
高精度与高速度:通过优化模型结构和参数,YOLOv5在保持高精度(mAP可达83.8%)的同时,实现了较快的检测速度(可达140FPS),适用于实时检测场景。
易用性与可扩展性:YOLOv5提供了简单易用的接口和多种预训练模型,便于用户进行模型训练和部署。同时,支持自定义数据集进行训练,具有良好的可扩展性。
数据增强技术:如Mosaic图像增强等技术的应用,有效增加了数据集的多样性,提高了模型的鲁棒性和泛化能力。
三、优劣分析
优点:

速度快:YOLOv5的检测速度非常快,适用于实时性要求较高的应用场景。
精度高:在多种目标检测任务中表现出色,具有较高的准确率。
易于训练与部署:提供了简单易用的接口和多种预训练模型,降低了模型训练和部署的门槛。
可扩展性强:支持自定义数据集进行训练,适用于不同场景下的目标检测任务。
缺点:

对小目标检测效果不佳:相比于一些专门针对小目标检测的算法,YOLOv5在小目标检测上的表现可能有所不足。
对密集目标检测效果不佳:在密集目标检测场景中,YOLOv5可能会出现重叠框的问题,影响检测效果。
需要更多的训练数据:为了达到更好的检测效果,YOLOv5需要更多的训练数据来支撑模型的训练过程。
YOLOv5算法模型以其单阶段检测、高精度与高速度、易用性与可扩展性等优势在目标检测领域取得了显著成效。然而,在应对小目标和密集目标检测等挑战时仍需进一步优化和改进。

实验截止目前,本文将YOLOv5系列五款不同参数量级的模型均进行了开发评测,接下来看下模型详情:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
 
# Parameters
nc: 3    # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 1024]
  l: [1.00, 1.00, 1024]
  x: [1.33, 1.25, 1024]
 
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]
 
# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)
  ]

实验阶段我们保持完全相同的参数设置,等待五款参数量级的模型全部开发训练完成后来对其进行全方位各指标的对比分析。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【loss曲线】
在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

整体5款模型对比结果来看,五款模型最终没有拉开较为明显的差距,其中,n系列的模型效果略低一点,其余4款模型则达到了较为相近的水准,这里我们综合考虑使用s系列的模型作为最终的推理模型。

接下来看下s系列模型的详情。

【离线推理实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

智能化监管手段的应用,不仅能够提高监管效率,减少人力成本,还能实现精准执法,降低事故风险。例如,在道路卡口、红绿灯等关键位置,无人机可以进行重点巡航,对违规行为进行高频次监测。这种模式不仅能够有效遏制违规行为的发生,还能通过数据分析为交通管理部门提供决策支持,优化交通资源配置。然而,智能化监管也面临着一些挑战。例如,无人机的续航能力和数据传输稳定性需要进一步提升,以确保长时间、不间断的监控。此外,如何确保数据的安全性和隐私保护,也是需要解决的问题。未来,随着技术的不断进步和政策的逐步完善,智能化交通监管有望在更多城市得到推广和应用。通过无人机与AI技术的深度融合,我们有望实现更高效、更精准的交通管理,为电动自行车的安全出行保驾护航。总之,电动自行车的交通安全问题需要全社会的共同努力。智能化技术的应用为解决这一问题提供了新的思路和方法,但同时也需要我们不断完善相关技术和制度,以确保其有效实施。让我们携手共进,共同创造一个更加安全、有序的交通环境。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值