第十周项目二(二叉树遍历的递归算法)

问题及代码:

*Copyright(c)2016,烟台大学计算机与控制工程学院 
 *All right reserved. 
 *文件名称:二叉树遍历的递归算法  .cpp 
 *作者:张冰 
 *完成日期;2016年11月3日 
 *版本号;v1.0 
 *问题描述:实现二叉树的先序、中序、后序遍历的递归算法, 
并对用”A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))”创建的二叉树进行测试。  
 
 
 *输入描述:用括号的形式去输入二叉树的各个节点值 
 *程序输出:三种遍序的序列 
*/  
#include <stdio.h>  
#include "btree.h"  
  
int main()  
{  
    BTNode *b;  
    CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");  
    printf("二叉树b:");  
    DispBTNode(b);  
    printf("\n");  
    printf("先序遍历序列:\n");  
    PreOrder(b);  
    printf("\n");  
    printf("中序遍历序列:\n");  
    InOrder(b);  
    printf("\n");  
    printf("后序遍历序列:\n");  
    PostOrder(b);  
    printf("\n");  
    DestroyBTNode(b);  
    return 0;  
}  
#define MaxSize 100  
typedef char ElemType;  
typedef struct node  
{  
    ElemType data;              //数据元素  
    struct node *lchild;        //指向左孩子  
    struct node *rchild;        //指向右孩子  
} BTNode;  
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链  
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针  
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针  
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针  
int BTNodeDepth(BTNode *b); //求二叉树b的深度  
void DispBTNode(BTNode *b); //以括号表示法输出二叉树  
void DestroyBTNode(BTNode *&b);  //销毁二叉树  
void PostOrder(BTNode *b);      //后序遍历的递归算法  
void InOrder(BTNode *b);         //中序遍历的递归算法  
void PreOrder(BTNode *b);        //先序遍历的递归算法  
#include <stdio.h>  
#include <malloc.h>  
#include "btree.h"  
void PreOrder(BTNode *b)        //先序遍历的递归算法  
{  
    if (b!=NULL)  
    {  
        printf("%c ",b->data);  //访问根节点  
        PreOrder(b->lchild);    //递归访问左子树  
        PreOrder(b->rchild);    //递归访问右子树  
    }  
}  
  
void InOrder(BTNode *b)         //中序遍历的递归算法  
{  
    if (b!=NULL)  
    {  
        InOrder(b->lchild);     //递归访问左子树  
        printf("%c ",b->data);  //访问根节点  
        InOrder(b->rchild);     //递归访问右子树  
    }  
}  
  
void PostOrder(BTNode *b)       //后序遍历的递归算法  
{  
    if (b!=NULL)  
    {  
        PostOrder(b->lchild);   //递归访问左子树  
        PostOrder(b->rchild);   //递归访问右子树  
        printf("%c ",b->data);  //访问根节点  
    }  
}  
  
  
void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链  
{  
    BTNode *St[MaxSize],*p=NULL;  
    int top=-1,k,j=0;  
    char ch;  
    b=NULL;             //建立的二叉树初始时为空  
    ch=str[j];  
    while (ch!='\0')    //str未扫描完时循环  
    {  
        switch(ch)  
        {  
        case '(':  
            top++;  
            St[top]=p;  
            k=1;  
            break;      //为左节点  
        case ')':  
            top--;  
            break;  
        case ',':  
            k=2;  
            break;                          //为右节点  
        default:  
            p=(BTNode *)malloc(sizeof(BTNode));  
            p->data=ch;  
            p->lchild=p->rchild=NULL;  
            if (b==NULL)                    //p指向二叉树的根节点  
                b=p;  
            else                            //已建立二叉树根节点  
            {  
                switch(k)  
                {  
                case 1:  
                    St[top]->lchild=p;  
                    break;  
                case 2:  
                    St[top]->rchild=p;  
                    break;  
                }  
            }  
        }  
        j++;  
        ch=str[j];  
    }  
}  
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针  
{  
    BTNode *p;  
    if (b==NULL)  
        return NULL;  
    else if (b->data==x)  
        return b;  
    else  
    {  
        p=FindNode(b->lchild,x);  
        if (p!=NULL)  
            return p;  
        else  
            return FindNode(b->rchild,x);  
    }  
}  
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针  
{  
    return p->lchild;  
}  
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针  
{  
    return p->rchild;  
}  
int BTNodeDepth(BTNode *b)  //求二叉树b的深度  
{  
    int lchilddep,rchilddep;  
    if (b==NULL)  
        return(0);                          //空树的高度为0  
    else  
    {  
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep  
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep  
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);  
    }  
}  
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树  
{  
    if (b!=NULL)  
    {  
        printf("%c",b->data);  
        if (b->lchild!=NULL || b->rchild!=NULL)  
        {  
            printf("(");  
            DispBTNode(b->lchild);  
            if (b->rchild!=NULL) printf(",");  
            DispBTNode(b->rchild);  
            printf(")");  
        }  
    }  
}  
void DestroyBTNode(BTNode *&b)   //销毁二叉树  
{  
    if (b!=NULL)  
    {  
        DestroyBTNode(b->lchild);  
        DestroyBTNode(b->rchild);  
        free(b);  
    }  
}  


运行结果:

知识点总结:

对于先序中序后序的各种方法

学习心得:

有进步就会越来越好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值