LeetCode-268. Missing Numberhttps://leetcode.com/problems/missing-number/
题目描述
Given an array nums
containing n
distinct numbers in the range [0, n]
, return the only number in the range that is missing from the array.
Example 1:
Input: nums = [3,0,1] Output: 2 Explanation: n = 3 since there are 3 numbers, so all numbers are in the range [0,3]. 2 is the missing number in the range since it does not appear in nums.
Example 2:
Input: nums = [0,1] Output: 2 Explanation: n = 2 since there are 2 numbers, so all numbers are in the range [0,2]. 2 is the missing number in the range since it does not appear in nums.
Example 3:
Input: nums = [9,6,4,2,3,5,7,0,1] Output: 8 Explanation: n = 9 since there are 9 numbers, so all numbers are in the range [0,9]. 8 is the missing number in the range since it does not appear in nums.
Constraints:
n == nums.length
1 <= n <= 104
0 <= nums[i] <= n
- All the numbers of
nums
are unique.
Follow up: Could you implement a solution using only O(1)
extra space complexity and O(n)
runtime complexity?
解题思路
【C++解法】
1. Sum
Time Complexity : O(N)
Space Complexity : O(1)
class Solution {
public:
int missingNumber(vector<int>& nums) {
int n = nums.size();
int full = n * (n + 1) / 2, sum = 0;
for (int num : nums) {sum += num;}
return full - sum;
}
};
也可以这样
class Solution {
public:
int missingNumber(vector<int>& nums) {
int n = nums.size(), sum = n * (n + 1) / 2;
for(int i=0; i<n; i++) {sum -= nums[i];}
return sum;
}
};
2. XOR
class Solution {
public:
int missingNumber(vector<int>& nums) {
int n = nums.size();
int xorArrEle = nums[0];
for(int itr = 1; itr < n; itr++) {xorArrEle = xorArrEle ^ nums[itr];}
int xorNaturalEle = 1;
for(int itr = 2; itr <= n; itr++) {xorNaturalEle = xorNaturalEle ^ itr;}
return xorArrEle ^ xorNaturalEle;
}
};
也可以这样
class Solution {
public:
int missingNumber(vector<int>& nums) {
int ret = 0;
for (int i=0; i<nums.size(); i++) {ret ^= i ^ nums[i];}
return ret ^ nums.size();
}
};
【Java解法】
1. Sum
class Solution {
public int missingNumber(int[] nums) {
int n = nums.length;
int full = n * (n + 1) / 2, sum = 0;
for (int num : nums) {sum += num;}
return full - sum;
}
}
2. XOR
class Solution {
public int missingNumber(int[] nums) {
int ret = 0;
for (int i=0; i<nums.length; i++) {ret ^= i ^ nums[i];}
return ret ^ nums.length;
}
}