7-1 理论课:任务式对话系统

本文介绍了对话系统的分类,包括任务型对话、闲聊型对话及问答型对话等,并探讨了Pipeline型任务对话系统的构成,如NLU、DST、NLG等关键技术。同时,对比了Pipeline架构与端到端模型的不同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、对话系统分类
在这里插入图片描述
任务型对话具体领域的场景、闲聊型对话情感陪伴、问答型对话知识满足
在这里插入图片描述
智能家居的应用
在这里插入图片描述
消费电子应用
在这里插入图片描述
车载出现应用
在这里插入图片描述
智能客服应用,文字智能客服和语音智能客服
二、Pipeline型任务对话系统
在这里插入图片描述
在这里插入图片描述
NLU就是意图识别和词槽识别
在这里插入图片描述
NLU典型算法举例
在这里插入图片描述
DST 多伦对话的词槽概率分布的跟踪
在这里插入图片描述
DST算法模型原理
在这里插入图片描述
根据状态,得出相应的动作,类似强化学习,强化学习这块加强跟进
在这里插入图片描述
离线学习和在线学习,在线学习就是强化学习
在这里插入图片描述
机器自己跟自己对抗训练,类似自己跟自己下棋
在这里插入图片描述
自然语言生成NLG
在这里插入图片描述
类Pipeline就是pipeline的架构但是开源整体训练,端到端的模型
在这里插入图片描述
两种类型对比
在这里插入图片描述
端到端模型算法案列,分两阶段是因为要和知识库进行交互
在这里插入图片描述
工业界对话平台
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值