大模型-报错RuntimeError: Expected all tensors to be on the same device, but found at least two devices, c

报错

RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:1 and cuda:0! (when checking argument for argument mat2 in method wrapper_CUDA_mm)

解决方案

docker run --gpus all -d -v 

改成

docker run --gpus "device=0" -d -v

在容器层面限制调用的GPU显卡,防止代码自动调用多张显卡,导致报错

当你在进行分布式训练时,遇到 `RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:1 and cpu!` 这个错误,通常意味着在你的代码中,PyTorch 或其他深度学习框架期望所有的张量(Tensor)都在同一个设备上(例如GPU或CPU),但实际操作中,它们被分配到了不同的设备。 这个问题通常是由于以下几个原因: 1. **数据加载器不一致**:如果数据加载器在GPU和CPU之间切换,可能会导致这样的错误。确保数据在训练过程中始终在同一个设备上加载。 2. **模型或层定义**:检查模型或网络中的层,看是否有跨设备的数据传输。例如,如果你的模型部分在GPU上训练,部分在CPU上,这会导致冲突。 3. **数据并行或模型并行**:在使用数据并行(Data Parallelism)时,每个GPU处理一部分数据,而在模型并行(Model Parallelism)中,模型的一部分可能分布在多个GPU上。如果这些并行策略设置不当,可能会导致设备不一致。 4. **优化器设置**:检查优化器是否正确地将参数移动到预期的设备。例如,Adam优化器默认会在GPU可用时将参数放置在GPU上。 为了解决这个问题,你需要检查代码中的相应部分,确保所有张量的操作都在同一设备上进行。具体方法可能是: - 明确指定数据加载器、模型、张量等在哪个设备上运行。 - 调整并行策略,如使用 `torch.nn.DataParallel` 或 `torch.nn.parallel.DistributedDataParallel` 并确保正确配置。 - 确认没有手动将张量从一个设备复制到另一个设备。 如果你正在使用分布式训练框架如Horovod或PyTorch DDP,请查看官方文档或相关教程,了解正确的设置步骤。如果你能提供更多的上下文或者代码片段,我可以给出更具体的指导。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值