高等数学题目答疑

持续更新中…
1、设当 x → 0 x\rightarrow0 x0时, e x − ( 2 a x 2 + 3 b x + 1 ) e^x-(2ax^2+3bx+1) ex(2ax2+3bx+1)是比 x 3 x^3 x3高阶的无穷小,求a和b。

解:根据泰勒公式/麦克劳林展开式, e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) \mathrm{e}^{x}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+o\left(x^{3}\right) ex=1+x+2!x2+3!x3+o(x3),因此 e x − ( 2 a x 2 + 3 b x + 1 ) = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) − ( 2 a x 2 + 3 b x + 1 ) = ( 3 b − 1 ) x + ( 2 a − 1 2 ) x 2 + o ( x 3 ) e^x-(2ax^2+3bx+1)=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+o\left(x^{3}\right)-(2ax^2+3bx+1)=(3b-1)x+(2a-\frac{1}{2})x^2+o(x^3) ex(2ax2+3bx+1)=1+x+2!x2+3!x3+o(x3)(2ax2+3bx+1)=(3b1)x+(2a21)x2+o(x3)(注意,这里的高阶无穷小的条件是 x x x趋向于0), x x x的一次方和二次方系数都应该是0,因此有: b = 1 3 , a = 1 4 b=\frac{1}{3},a=\frac{1}{4} b=31,a=41

此题目还有另外一种快捷算法,根据高阶无穷小的定义可得下面极限的值为0: lim ⁡ x → 0 e x − ( 2 a x 2 + 3 b x + 1 ) x 3 \lim _{x \rightarrow 0} \frac{e^{x}-\left(2 a x^{2}+3 b x+1\right)}{x^{3}} x0limx3ex(2ax2+3bx+1)使用洛必达法则,上下同时求导,可以求得a和b的值。(但这里有一个小问题,考虑你是不是把题目抄错了,应该是 x 2 x^2 x2

析:本题考察的是高阶无穷小的定义,难度一般,但是希望你在学习的时候不要忽略了数学中最根本的东西,看到题目时认真考虑题目的意图,不要急躁,一定可以找到解决思路的。

2、已知 f ( x ) f(x) f(x) x > 0 x>0 x>0处连续, f ( 1 ) = 3 f(1)=3 f(1)=3,且由方程 ∫ 1 x y f ( t ) d t = x ∫ 1 y f ( t ) f t + y ∫ 1 x f ( t ) d t \int_{1}^{x y} f(t) d t=x \int_{1}^{y} f(t) f t+y \int_{1}^{x} f(t) d t 1xyf(t)dt=x1yf(t)ft+y1xf(t)dt确定 y y y x x x的函数,求 f ( x ) f(x) f(x)

解:对于方程 ∫ 1 x y f ( t ) d t = x ∫ 1 y f ( t ) f t + y ∫ 1 x f ( t ) d t \int_{1}^{x y} f(t) d t=x \int_{1}^{y} f(t) f t+y \int_{1}^{x} f(t) d t 1xyf(t)dt=x1yf(t)ft+y1xf(t)dt两边同时对 y y y求导,可得: x f ( x y ) = x f ( y ) + ∫ 1 x f ( t ) d t x f(x y)=x f(y)+\int_{1}^{x} f(t) d t xf(xy)=xf(y)+1xf(t)dt
y = 1 y=1 y=1可得: x f ( x ) = 3 x + ∫ 1 x f ( t ) d t x f(x)=3 x+\int_{1}^{x} f(t) d t xf(x)=3x+1xf(t)dt方程两边再同时对 x x x求导,可得 x f ′ ( x ) + f ( x ) = 3 + f ( x ) x f^{\prime}(x)+f(x)=3+f(x) xf(x)+f(x)=3+f(x)求这个方程,两边同时消去 f ( x ) f(x) f(x),可以得到 f ′ ( x ) = 3 x f^{\prime}(x)=\frac{3}{x} f(x)=x3因此 f ( x ) = 3 ln ⁡ x + C f(x)=3 \ln x+C f(x)=3lnx+C最后根据 f ( 1 ) = 3 f(1)=3 f(1)=3,求得 C = 3 C=3 C=3

析:本题考察的是变上限的定积分,要灵活运用导数和积分的关系。此外,在解答题目的时候,要特别注意对已知条件的使用,比如本题巧妙使用了 f ( 1 ) = 3 f(1)=3 f(1)=3这个条件。

3、设 f ( x ) ∈ [ a , b ] f(x)\in[a,b] f(x)[a,b],且 f ( x ) > 0 f(x)>0 f(x)>0,证明: ∫ a b f ( x ) d x ⋅ ∫ a b d x f ( x ) ⩾ ( b − a ) 2 \int_{a}^{b} f(x) d x \cdot \int_{a}^{b} \frac{d x}{f(x)} \geqslant(b-a)^{2} abf(x)dxabf(x)dx(ba)2

解:设 F ( t ) = ∫ a t f ( x ) d x ∫ a t 1 f ( x ) d x − ( t − a ) 2 F(t)=\int_{a}^{t} f(x) \mathrm{d} x \int_{a}^{t} \frac{1}{f(x)} \mathrm{d} x-(t-a)^{2} F(t)=atf(x)dxatf(x)1dx(ta)2,则 F ( a ) = 0 F(a)=0 F(a)=0,关于t求导,可得: F ′ ( t ) = f ( t ) ∫ a t 1 f ( x ) d x + 1 f ( t ) ∫ a t f ( x ) d x − 2 ( t − a ) = ∫ a t f ( t ) f ( x ) d x + ∫ a t f ( x ) f ( t ) d x − ∫ a t 2   d x = ∫ a t [ f ( t ) f ( x ) + f ( x ) f ( t ) − 2 ] d x = ∫ a t [ f ( t ) f ( x ) − f ( x ) f ( t ) ] 2   d x ⩾ 0 \begin{aligned} F^{\prime}(t) &=f(t) \int_{a}^{t} \frac{1}{f(x)} \mathrm{d} x+\frac{1}{f(t)} \int_{a}^{t} f(x) \mathrm{d} x-2(t-a) \\ &=\int_{a}^{t} \frac{f(t)}{f(x)} \mathrm{d} x+\int_{a}^{t} \frac{f(x)}{f(t)} \mathrm{d} x-\int_{a}^{t} 2 \mathrm{~d} x=\int_{a}^{t}\left[\frac{f(t)}{f(x)}+\frac{f(x)}{f(t)}-2\right] \mathrm{d} x \\ &=\int_{a}^{t}\left[\sqrt{\frac{f(t)}{f(x)}}-\sqrt{\frac{f(x)}{f(t)}}\right]^{2} \mathrm{~d} x \geqslant 0 \end{aligned} F(t)=f(t)atf(x)1dx+f(t)1atf(x)dx2(ta)=atf(x)f(t)dx+atf(t)f(x)dxat2 dx=at[f(x)f(t)+f(t)f(x)2]dx=at[f(x)f(t) f(t)f(x) ]2 dx0由此可得 F ( b ) ⩾ 0 F(b) \geqslant 0 F(b)0,即 ∫ a b f ( x ) d x ∫ a b 1 f ( x ) d x − ( b − a ) 2 ⩾ 0 \int_{a}^{b} f(x) \mathrm{d} x \int_{a}^{b} \frac{1}{f(x)} \mathrm{d} x-(b-a)^{2} \geqslant 0 abf(x)dxabf(x)1dx(ba)20,因此有: ∫ a b f ( x ) d x ∫ a b 1 f ( x ) d x ⩾ ( b − a ) 2 \int_{a}^{b} f(x) \mathrm{d} x \int_{a}^{b} \frac{1}{f(x)} \mathrm{d} x \geqslant(b-a)^{2} abf(x)dxabf(x)1dx(ba)2

析:本题有些难度。关键在于构造函数,常见的不等式的证明大多是构造一个函数,然后利用平方项等常见的不等式关系进行证明。这些题目见得多了就有感觉了。

4、设 F ( x ) F(x) F(x) f ( x ) f(x) f(x)的原函数,且 F ( 0 ) = 1 F(0)=1 F(0)=1,当 x ⩾ 0 x \geqslant 0 x0,有 f ( x ) F ( x ) = sin ⁡ 2 2 x , F ( x ) ⩾ 0 f(x) F(x)=\sin ^{2} 2 x, F(x) \geqslant 0 f(x)F(x)=sin22x,F(x)0,求 f ( x ) f(x) f(x)

解:对 x ⩾ 0 x \geqslant 0 x0,有 f ( x ) F ( x ) = sin ⁡ 2 2 x , F ( x ) ⩾ 0 f(x) F(x)=\sin ^{2} 2 x, F(x) \geqslant 0 f(x)F(x)=sin22x,F(x)0两边同时积分,有: ∫ F ( x ) F ′ ( x ) d x = ∫ sin ⁡ 2 2 x   d x \int F(x) F^{\prime}(x) \mathrm{d} x=\int \sin ^{2} 2 x \mathrm{~d} x F(x)F(x)dx=sin22x dx利用换元积分法 ∫ F ( x ) F ′ ( x ) d x = ∫ F ( x ) d F ( x ) \int F(x) F^{\prime}(x) \mathrm{d} x=\int F(x) \mathrm{d}F(x) F(x)F(x)dx=F(x)dF(x)可得: F 2 ( x ) = x − 1 4 sin ⁡ 4 x + C F^{2}(x)=x - \frac{1}{4} \sin 4 x +C F2(x)=x41sin4x+C利用 F ( 0 ) = 1 F(0)=1 F(0)=1,可以求解 C = 1 C=1 C=1。因此: F ( x ) = x − 1 4 sin ⁡ 4 x + 1 ( F ( x ) ⩾ 0 ) F(x)=\sqrt{x-\frac{1}{4} \sin 4 x+1} \quad(F(x) \geqslant 0) F(x)=x41sin4x+1 (F(x)0)最后有: f ( x ) = F ′ ( x ) = sin ⁡ 2 2 x x − 1 4 sin ⁡ 4 x + 1 f(x)=F^{\prime}(x)=\frac{\sin ^{2} 2 x}{\sqrt{x-\frac{1}{4} \sin 4 x+1}} f(x)=F(x)=x41sin4x+1 sin22x

析:通过上述题目,发现你的积分方面的知识有些弱,特别是不会灵活运用方程两边同时积分的技巧,希望在这部分多多练习。

5、设 I n = ∫ sec ⁡ n x d x I_{n}=\int \sec ^{n} x d x In=secnxdx,证明递推公式 I n = 1 n − 1 sec ⁡ n − 2 x ⋅ tan ⁡ x + n − 2 n − 1 I ⁡ n − 2 ( n ⩾ 2 ) I_{n}=\frac{1}{n-1} \sec ^{n-2} x \cdot \tan x+\frac{n-2}{n-1} \operatorname{I}_{n-2}(n \geqslant 2) In=n11secn2xtanx+n1n2In2(n2)

解:利用分部积分法,有: I n = ∫ sec ⁡ n x d x = ∫ sec ⁡ n − 2 x sec ⁡ 2 x d x = ∫ sec ⁡ n − 2 x d ( tan ⁡ x ) = sec ⁡ n − 2 x tan ⁡ x − ∫ tan ⁡ x d ( sec ⁡ n − 2 x ) = sec ⁡ n − 2 x tan ⁡ x − ( n − 2 ) ∫ tan ⁡ x sec ⁡ n − 3 x sec ⁡ x tan ⁡ x d x = sec ⁡ n − 2 x tan ⁡ x − ( n − 2 ) ∫ sec ⁡ n − 2 x tan ⁡ 2 x d x = sec ⁡ n − 2 x tan ⁡ x − ( n − 2 ) ∫ sec ⁡ n − 2 x ( sec ⁡ 2 x − 1 ) d x = sec ⁡ n − 2 x tan ⁡ x − ( n − 2 ) I n + ( n − 2 ) ∫ sec ⁡ n − 2 x d x \begin{array}{l}I_{n}=\int \sec ^{n} x d x \\ =\int \sec ^{n-2} x \sec ^{2} x d x \\ =\int \sec ^{n-2} x d(\tan x) \\ =\sec ^{n-2} x \tan x-\int \tan x d\left(\sec ^{n-2} x\right) \\ =\sec ^{n-2} x \tan x-(n-2) \int \tan x \sec ^{n-3} x \sec x \tan x d x \\ =\sec ^{n-2} x \tan x-(n-2) \int \sec ^{n-2} x \tan ^{2} x d x \\ =\sec ^{n-2} x \tan x-(n-2) \int \sec ^{n-2} x\left(\sec ^{2} x-1\right) d x \\ =\sec ^{n-2} x \tan x-(n-2) I_{n}+(n-2) \int \sec ^{n-2} x d x\end{array} In=secnxdx=secn2xsec2xdx=secn2xd(tanx)=secn2xtanxtanxd(secn2x)=secn2xtanx(n2)tanxsecn3xsecxtanxdx=secn2xtanx(n2)secn2xtan2xdx=secn2xtanx(n2)secn2x(sec2x1)dx=secn2xtanx(n2)In+(n2)secn2xdx
( n − 2 ) I n (n-2)I_n (n2)In移到左边,有: ( n − 1 ) I n = sec ⁡ n − 2 x tan ⁡ x + ( n − 2 ) ∫ sec ⁡ n − 2 x d x (n-1) I_{n}=\sec ^{n-2} x \tan x+(n-2) \int \sec ^{n-2} x d x (n1)In=secn2xtanx+(n2)secn2xdx,于是有: I n = sec ⁡ n − 2 x tan ⁡ x n − 1 + n − 2 n − 1 ∫ sec ⁡ n − 2 x d x I_{n}=\frac{\sec ^{n-2} x \tan x}{n-1}+\frac{n-2}{n-1} \int \sec ^{n-2} x d x In=n1secn2xtanx+n1n2secn2xdx即: I n = 1 n − 1 sec ⁡ n − 2 x ⋅ tan ⁡ x + n − 2 n − 1 I ⁡ n − 2 ( n ⩾ 2 ) I_{n}=\frac{1}{n-1} \sec ^{n-2} x \cdot \tan x+\frac{n-2}{n-1} \operatorname{I}_{n-2}(n \geqslant 2) In=n11secn2xtanx+n1n2In2(n2)

析:分部积分法是求积分的重要方法,一定要掌握并且灵活运用;关于常见三角函数的积分、导数,一定要牢牢记熟。

6、求 ∫ 1 ( x − a ) n + 1 ( x − b ) n − 1 n d x \int \frac{1}{\sqrt[n]{(x-a)^{n+1}(x-b)^{n-1}}} d x n(xa)n+1(xb)n1 1dx n n n为自然数。

解:原式= ∫ 1 [ ( x − a ) n ( x − b ) n ( x − a x − b ) ] 1 n d x \int \frac{1}{\left[(x-a)^{n}(x-b)^{n}\left(\frac{x-a}{x-b}\right)\right]^{\frac{1}{n}}} d x [(xa)n(xb)n(xbxa)]n11dx
可以进一步化简为: ∫ 1 ( x − a ) ( x − b ) ( x − a x − b ) 1 n d x \int \frac{1}{(x-a)(x-b)\left(\frac{x-a}{x-b}\right)^{\frac{1}{n}}} d x (xa)(xb)(xbxa)n11dx
设: ( x − a x − b ) 1 n = t \left(\frac{x-a}{x-b}\right)^{\frac{1}{n}}=t (xbxa)n1=t

则: d t d x = 1 n ( x − a x − b ) 1 n − 1 a − b ( x − b ) 2 = 1 n t x − b x − a ⋅ a − b ( x − b ) 2 = 1 n t a − b ( x − a ) ( x − b ) \begin{aligned} \frac{d t}{d x} &=\frac{1}{n}\left(\frac{x-a}{x-b}\right)^{\frac{1}{n}-1} \frac{a-b}{(x-b)^{2}} \\ &=\frac{1}{n} t \frac{x-b}{x-a} \cdot \frac{a-b}{(x-b)^{2}} \\ &=\frac{1}{n} t \frac{a-b}{(x-a)(x-b)} \end{aligned} dxdt=n1(xbxa)n11(xb)2ab=n1txaxb(xb)2ab=n1t(xa)(xb)ab
于是有: d x = n ( x − a ) ( x − b ) ( a − b ) t d t d x=\frac{n(x-a)(x-b)}{(a-b) t} d t dx=(ab)tn(xa)(xb)dt
对原积分进行换元,有: ∫ 1 ( x − a ) ( x − b ) t ⋅ n ( x − a ) ( x − b ) ( a − b ) t d t = n 1 a − b ∫ 1 t 2 d t \int \frac{1}{(x-a)(x-b) t} \cdot \frac{n(x-a)(x-b)}{(a-b) t} d t=n \frac{1}{a-b} \int \frac{1}{t^{2}} d t (xa)(xb)t1(ab)tn(xa)(xb)dt=nab1t21dt
这是一个常见的积分,可以求得结果为: − n a − b 1 t + C \frac{-n}{a-b}\frac{1}{t}+C abnt1+C

析:这是一个稍微复杂一点的积分题目,重点是找对换元,能够合理化简。在考试时如果不能马上求出来,可以先放弃,做完其它题目再来处理。

7、选择一个常数: C C C,使得 ∫ a b ( x + c ) cos ⁡ 99 ( x + c ) d x = 0 \int_{a}^{b}(x+c) \cos ^{99}(x+c) d x=0 ab(x+c)cos99(x+c)dx=0

解:暂时没做

8、求多项式 f ( x ) f(x) f(x),使它满足方程 ∫ 0 1 f ( x t ) d t + ∫ 0 x f ( t − 1 ) d t = x 3 + 2 x \int_{0}^{1} f(x t) d t+\int_{0}^{x} f(t-1) d t=x^{3}+2 x 01f(xt)dt+0xf(t1)dt=x3+2x

解:设 x t = y xt=y xt=y,则 ∫ 0 1 f ( x t ) d t = ∫ 0 x f ( y ) d y = 1 x ∫ 0 x f ( y ) d y \int_{0}^{1} f(x t) d t=\int_{0}^{x} f(y) d y=\frac{1}{x} \int_{0}^{x} f(y) d y 01f(xt)dt=0xf(y)dy=x10xf(y)dy
原方程可以做如下推导:
1 x ∫ 0 x f ( y ) d y + ∫ 0 x f ( t − 1 ) d ( t − 1 ) = x 3 + 2 x \frac{1}{x} \int_{0}^{x} f(y) d y+\int_{0}^{x} f(t-1) d(t-1)=x^{3}+2 x x10xf(y)dy+0xf(t1)d(t1)=x3+2x
两边同时乘以 x x x,并对 x x x求导:
f ( x ) + x f ( x ) + ∫ 0 x f ( t − 1 ) d ( t − 1 ) = 4 x 3 + 4 x f(x)+x f(x)+\int_{0}^{x} f(t-1) d(t-1)=4 x^{3}+4 x f(x)+xf(x)+0xf(t1)d(t1)=4x3+4x
两边再同时对 x x x求导: f ′ ( x ) + x f ′ ( x ) + f ( x ) + f ( x ) = 12 x 2 + 4 f^{\prime}(x)+x f^{\prime}(x)+f(x)+f(x)=12 x^{2}+4 f(x)+xf(x)+f(x)+f(x)=12x2+4
如果 f ( x ) f(x) f(x)的最高阶数是3,对应系数是 p p p,则有:
方程左边第二项和第三项、第四项中有三次方,系数相加是5p,右边三次方的系数为0,因此 p = 0 p=0 p=0,最高阶大于3时同理,因此 f ( x ) f(x) f(x)的最高阶是2,设为 f ( x ) = a x 2 + b x + c f(x)=ax^2+b^x+c f(x)=ax2+bx+c,代入上面公式得到:
2 a x + b + 2 a x 2 + b x + 2 a x 2 + 2 b x + 2 c = 12 x 2 + 4 2 a x+b+2 a x^{2}+b x+2 a x^{2}+2 b x+2 c=12 x^{2}+4 2ax+b+2ax2+bx+2ax2+2bx+2c=12x2+4
2 a + 2 a = 12 ⇒ a = 3 2 a + b + 2 b = 0 ⇒ b = − 2 b + 2 c = 4 ⇒ c = 3 \begin{array}{l}2 a+2 a=12 \Rightarrow a=3 \\ 2 a+b+2 b=0 \Rightarrow b=-2 \\ b+2 c=4 \Rightarrow c=3\end{array} 2a+2a=12a=32a+b+2b=0b=2b+2c=4c=3

求完了。

析:本题我做了好久,因没有正确答案,也不知道最终结果求对了没,但是思路是对的。不严谨的做法可以直接设 f ( x ) = a x 2 + b x + c f(x)=ax^2+b^x+c f(x)=ax2+bx+c然后代入,但是严谨一点应该证明最高阶数。

9、谈论曲线 y = 4 ln ⁡ x + k y=4 \ln x+k y=4lnx+k y = 4 x + ( ln ⁡ x ) 4 y=4 x+(\ln x)^{4} y=4x+(lnx)4的交点个数。

解:这是个典型的焦点问题,构造新函数看零点就可以了。
φ ( x ) = ln ⁡ 4 x − 4 ln ⁡ x + 4 x − k ( x > 0 ) \varphi(x)=\ln ^{4} x-4 \ln x+4 x-k \quad(x>0) φ(x)=ln4x4lnx+4xk(x>0)
求导后有: φ ′ ( x ) = 4 ( ln ⁡ 3 x − 1 + x ) x \varphi^{\prime}(x)=\frac{4\left(\ln ^{3} x-1+x\right)}{x} φ(x)=x4(ln3x1+x)
从而: { φ ′ ( x ) < 0  当  0 < x < 1 φ ′ ( x ) = 0  当  x = 1 φ ′ ( x ) > 0  当  1 < x \left\{\begin{array}{l}\varphi^{\prime}(x)<0 \text { 当 } 0<x<1 \\ \varphi^{\prime}(x)=0 \text { 当 } x=1 \\ \varphi^{\prime}(x)>0 \text { 当 } 1<x\end{array}\right. φ(x)<0  0<x<1φ(x)=0  x=1φ(x)>0  1<x φ ( x ) \varphi(\mathrm{x}) φ(x)在(0,1)内单调递减,在 ( 1 , + ∞ ) (1,+\infty) (1,+)单调递增。
因此,在x=1时取得最小值,最小值是 φ ( 1 ) = 4 − k \varphi(1)=4-\mathrm{k} φ(1)=4k
接下来讨论 k k k对零点/交点的影响。

  1. φ ( 1 ) > 0  ,即  k < 4 \varphi(1)>0 \text { ,即 } k<4 φ(1)>0 ,即 k<4时,无零点/交点;
  2. φ ( 1 ) = 0 \varphi(1)=0 φ(1)=0,即 k = 4 k=4 k=4时,只有一个零点/交点;
  3. φ ( 1 ) < 0 ,  即  k > 4 \varphi(1)<0 , \text { 即 } k>4 φ(1)<0  k>4,因为: lim ⁡ x → 0 + φ ( x ) = lim ⁡ x → 0 + [ ln ⁡ x ( ln ⁡ 3 x − 4 ) + 4 x − k ] = + ∞ \lim _{x \rightarrow 0^{+}} \varphi(x)=\lim _{x \rightarrow 0^{+}}\left[\ln x\left(\ln ^{3} x-4\right)+4 x-k\right]=+\infty x0+limφ(x)=x0+lim[lnx(ln3x4)+4xk]=+ lim ⁡ x → + ∞ φ ( x ) = lim ⁡ x → + ∞ [ ln ⁡ x ( ln ⁡ 3 x − 4 ) + 4 x − k ] = + ∞ \lim _{x \rightarrow+\infty} \varphi(x)=\lim _{x \rightarrow+\infty}\left[\ln x\left(\ln ^{3} x-4\right)+4 x-k\right]=+\infty x+limφ(x)=x+lim[lnx(ln3x4)+4xk]=+因此有两个零点/交点。

析:求交点的问题一般来说就是构造新函数,然后转换成求零点的问题,根据单调性和极值来判断。

10、若 f ( 1 ) = 1 f(1)=1 f(1)=1,且 f ′ ( 1 ) f'(1) f(1)存在,求 lim ⁡ x → 0 f ( sin ⁡ 2 x + cos ⁡ x ) ( e x − 1 ) tan ⁡ x \lim _{x \rightarrow 0} \frac{f\left(\sin ^{2} x+\cos x\right)}{\left(e^{x}-1\right) \tan x} limx0(ex1)tanxf(sin2x+cosx)

解:根据等价无穷小的代换,有,原式等于: lim ⁡ x → 0 f ( sin ⁡ 2 x + cos ⁡ x ) x 2 \lim _{x \rightarrow 0} \frac{f\left(\sin ^{2} x+\cos x\right)}{x^{2}} x0limx2f(sin2x+cosx)

因为 f ′ ( 1 ) f'(1) f(1)存在,有: f ( 1 + x ) − f ( 1 ) = f ′ ( 1 ) x + o ( x ) f(1+x)-f(1)=f^{\prime}(1) x+o(x) f(1+x)f(1)=f(1)x+o(x)

因此: f [ 1 + sin ⁡ 2 x + cos ⁡ x − 1 ] = f ′ ( 1 ) ( sin ⁡ 2 x + cos ⁡ x − 1 ) + o ( sin ⁡ 2 x + cos ⁡ x − 1 ) f\left[1+\sin ^{2} x+\cos x-1\right]=f^{\prime}(1)\left(\sin ^{2} x+\cos x-1\right)+o\left(\sin ^{2} x+\cos x-1\right) f[1+sin2x+cosx1]=f(1)(sin2x+cosx1)+o(sin2x+cosx1)因此,原式等于: = lim ⁡ x → 0 f ′ ( 1 ) ( sin ⁡ 2 x + cos ⁡ x − 1 ) x 2 + lim ⁡ x → 0 o ( 1 2 x 2 ) x 2 = f ′ ( 1 ) lim ⁡ x → 0 sin ⁡ 2 x + cos ⁡ x − 1 x 2 = f ′ ( 1 ) 2 \begin{array}{l}=\lim _{x \rightarrow 0} \frac{f^{\prime}(1)\left(\sin ^{2} x+\cos x-1\right)}{x^{2}}+\lim _{x \rightarrow 0} \frac{o\left(\frac{1}{2} x^{2}\right)}{x^{2}} \\ =f^{\prime}(1) \lim _{x \rightarrow 0} \frac{\sin ^{2} x+\cos x-1}{x^{2}} \\ =\frac{f^{\prime}(1)}{2}\end{array} =limx0x2f(1)(sin2x+cosx1)+limx0x2o(21x2)=f(1)limx0x2sin2x+cosx1=2f(1)

析:关键是学会使用等价无穷小进行代换。

11、设函数 y = 4 x 2 − 1 x 2 − 1 y=\frac{4 x^{2}-1}{x^{2}-1} y=x214x21,求 y n y^n yn

解:根据你们课程内容,这个 y n y^n yn应该表示n阶导数。推导如下:
原式等于: 4 + 3 2 ( 1 x − 1 − 1 x + 1 ) = 4 + 3 2 [ ( x − 1 ) − 1 − ( x + 1 ) − 1 ] \begin{aligned} & 4+\frac{3}{2}\left(\frac{1}{x-1}-\frac{1}{x+1}\right) \\=& 4+\frac{3}{2}\left[(x-1)^{-1}-(x+1)^{-1}\right] \end{aligned} =4+23(x11x+11)4+23[(x1)1(x+1)1]

y ′ = 3 2 [ − 1 ( x − 1 ) 2 − ( − 1 ) ( x + 1 ) − 2 ] y 2 = 3 2 [ − 1 ⋅ ( − 2 ) ( x − 1 ) − 3 − ( − 1 ) ( − 2 ) ( x + 1 ) − 3 ] ⋮ y n = 3 2 ( − 1 ) n n ! [ ( x − 1 ) − n − 1 − ( x + 1 ) − n − 1 ] \begin{array}{l}y^{\prime}=\frac{3}{2}\left[-1(x-1)^{2}-(-1)(x+1)^{-2}\right] \\ y^{2}=\frac{3}{2}\left[-1 \cdot(-2)(x-1)^{-3}-(-1)(-2)(x+1)^{-3}\right] \\ \vdots \\ y^{n}=\frac{3}{2}\left (-1)^{n} n !\left[(x-1)^{-n-1}-(x+1)^{-n-1}\right]\right.\end{array} y=23[1(x1)2(1)(x+1)2]y2=23[1(2)(x1)3(1)(2)(x+1)3]yn=23(1)nn![(x1)n1(x+1)n1]

析:高中知识
关键是会对分式进行拆解。

12、设由方程 { x = t 2 + 2 t t 2 − y + ε sin ⁡ y = 1 \left\{\begin{array}{l}x=t^{2}+2 t \\ t^{2}-y+\varepsilon \sin y=1\end{array}\right. {x=t2+2tt2y+εsiny=1 ( 0 < ε < 1 ) (0<\varepsilon<1) (0<ε<1)确定 y = y ( x ) y=y(x) y=y(x),求 d 2 y d x 2 \frac{d^{2} y}{d x^{2}} dx2d2y

解:这个题目有点耐心就可以了。 可以是一步一步求,也可以参考https://iask.sina.com.cn/b/11781084.html,使用一些记法来求。

析:隐函数求导特别容易搞错符号,只要耐心、细心,就总能求出来。

13、设 f ( x ) + f ( x − 1 x ) = 2 x f(x)+f\left(\frac{x-1}{x}\right)=2 x f(x)+f(xx1)=2x,其中 x ≠ 0 , x ≠ 1 x \neq 0, \quad x \neq 1 x=0,x=1,求 f ( x ) f(x) f(x)

解: 因为 f ( x ) + f ( x − 1 x ) = 2 x (1) f(x)+f\left(\frac{x-1}{x}\right)=2 x \tag {1} f(x)+f(xx1)=2x(1)
x − 1 x  替代  x \frac{x-1}{x} \text { 替代 } x xx1 替代 x,得到: f ( x − 1 x ) + f ( − 1 x − 1 ) = 2 x − 2 x (2) f\left(\frac{x-1}{x}\right)+f\left(\frac{-1}{x-1}\right)=\frac{2 x-2}{x}\tag{2} f(xx1)+f(x11)=x2x2(2)
令 (1)-(2),得到: f ( x ) − f ( − 1 x − 1 ) = 2 x − 2 x − 2 x (3) f(x)-f\left(\frac{-1}{x-1}\right)=2 x-\frac{2 x-2}{x}\tag{3} f(x)f(x11)=2xx2x2(3)
− 1 x − 1 \frac{-1}{x-1} x11替代 x x x,得到: f ( − 1 x − 1 ) − f ( x − 1 x ) = 2 ( − 1 x − 1 ) − 2 x (4) f\left(-\frac{1}{x-1}\right)-f\left(\frac{x-1}{x}\right)=2\left(-\frac{1}{x-1}\right)-2 x \tag{4} f(x11)f(xx1)=2(x11)2x(4)
使用(1)+(3)+(4)整理即可得到最终f(x)。

析:关键是寻找规律和换元,想办法消去 f ( x ) f(x) f(x)之外的东西。

14、试确定常数 a , b a,b a,b,使得 lim ⁡ x → ∞ ( 1 − x 3 3 − a x − b ) = 0 \lim _{x \rightarrow \infty}\left(\sqrt[3]{1-x^{3}}-a x-b\right)=0 limx(31x3 axb)=0

解: lim ⁡ x → 0 ( 1 − x 3 3 − a x − b ) = lim ⁡ x → 0 1 − x 3 − ( a x + b ) 3 ( 1 − x 3 ) 2 3 + ( a x + b ) 1 − x 3 3 + ( a x + b ) 2 = lim ⁡ x → 0 1 − x 3 − ( a 3 x 3 + 3 a 2 b x 2 + 3 a 2 b x 2 + b 3 ) ( 1 − x 3 ) 2 3 + ( a x + b ) 1 − x 3 3 + ( a x + b ) 2 \begin{array}{l}\lim _{x \rightarrow 0}\left(\sqrt[3]{1-x^{3}}-a x-b\right)=\lim _{x \rightarrow 0} \frac{1-x^{3}-(a x+b)^{3}}{\sqrt[3]{\left(1-x^{3}\right)^{2}}+(a x+b) \sqrt[3]{1-x^{3}}+(a x+b)^{2}} \\ =\lim _{x \rightarrow 0} \frac{1-x^{3}-\left(a^{3} x^{3}+3 a^{2} b x^{2}+3 a^{2} b x^{2}+b^{3}\right)}{\sqrt[3]{\left(1-x^{3}\right)^{2}}+(a x+b) \sqrt[3]{1-x^{3}}+(a x+b)^{2}}\end{array} limx0(31x3 axb)=limx03(1x3)2 +(ax+b)31x3 +(ax+b)21x3(ax+b)3=limx03(1x3)2 +(ax+b)31x3 +(ax+b)21x3(a3x3+3a2bx2+3a2bx2+b3)
因为分母的次数最高位2,题目在x趋近于无穷大时极限为0,因此分子的3次项和2次项系数必须为0,可得 − 1 − a 3 = 3 a 2 b = 0 -1-a^{3}=3 a^{2} b=0 1a3=3a2b=0,a=-1,b=0。

另外本题还可以使用提x的方法,请思考。

析: 分子有理化后找规律是解决此类问题的关键。

15、证明:数列 2 , 2 + 2 , 2 + 2 + 2 , … \sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \ldots 2 ,2+2 ,2+2+2 ,的极限存在。

解:根据单调有界定理:单调有界数列必有极限。
a 1 = 2 a 2 = 2 + 2 = 2 + a 1 ⋮ a n = 2 + a n − 1 \begin{array}{l}a_{1}=\sqrt{2} \\ a_{2}=\sqrt{2+\sqrt{2}}=\sqrt{2+a_{1}} \\ \vdots \\ a_{n}=\sqrt{2+a_{n-1}}\end{array} a1=2 a2=2+2 =2+a1 an=2+an1
先证明数列是单调递增的,首先有: a 2 − a 1 = 2 + 2 − 2 = 2 2 + 2 + 2 > 0 a_{2}-a_{1}=\sqrt{2+\sqrt{2}}-\sqrt{2}=\frac{\sqrt{2}}{\sqrt{2+\sqrt{2}}+\sqrt{2}}>0 a2a1=2+2 2 =2+2 +2 2 >0再证明 a n + 1 − a n 与 a n − a n − 1 a_{n+1}-a_{n}与 \quad a_{n}-a_{n-1} an+1ananan1同号即可:
a n + 1 − a n = 2 + a n − 2 + a n − 1 = a n − a n − 1 2 + a n + 2 + a n − 1 a_{n+1}-a_{n}=\sqrt{2+a_{n}}-\sqrt{2+a_{n-1}}=\frac{a_{n}-a_{n-1}}{\sqrt{2+a_{n}}+\sqrt{2+a_{n-1}}} an+1an=2+an 2+an1 =2+an +2+an1 anan1
分母大于0,因此左边和右边分子同号。
再证明有上界: a 1 = 2 < 2 a_{1}=\sqrt{2}<2 a1=2 <2 a 2 = 2 + a 1 < 2 + 2 = 2 ⋮ a n = 2 + a n − 1 < 2 + 2 = 2 \begin{array}{l}a_{2}=\sqrt{2+a_{1}}<\sqrt{2+2}=2 \\ \vdots \\ a_{n}=\sqrt{2+a_{n-1}}<\sqrt{2+2}=2\end{array} a2=2+a1 <2+2 =2an=2+an1 <2+2 =2上界是2,证毕。

析: 考察两个点,一个是单调有界定理,一个是分子有理化。
实际上,这个极限也是容易求的,请你试着求一下。

16、设函数 f ( x ) f(x) f(x) [ 0 , 3 ] [0,3] [0,3]内可导,且 f ( 0 ) + f ( 1 ) + f ( 2 ) = 3 , f ( 3 ) = 1 f(0)+f(1)+f(2)=3, f(3)=1 f(0)+f(1)+f(2)=3,f(3)=1,试证明必然存在 ξ ∈ ( 0 , 3 ) \xi \in(0,3) ξ(0,3),使得 f ′ ( ξ ) = 0 f^{\prime}(\xi)=0 f(ξ)=0

解: f ( x ) f(x) f(x)在[0,3]上可导,则一定连续;其在[0,2]上一定存在最小值m和最大值M,满足: m ⩽ f ( 0 ) ⩽ M , m ⩽ f ( 1 ) ⩽ M , m ⩽ f ( 2 ) ⩽ M m \leqslant f(0) \leqslant M, m \leqslant f(1) \leqslant M, m \leqslant f(2) \leqslant M mf(0)M,mf(1)M,mf(2)M从而有: m ⩽ f ( 0 ) + f ( 1 ) + f ( 2 ) 3 ⩽ M m \leqslant \frac{f(0)+f(1)+f(2)}{3} \leqslant M m3f(0)+f(1)+f(2)M根据介值定理和条件 f ( 0 ) + f ( 1 ) + f ( 2 ) = 3 , f ( 3 ) = 1 f(0)+f(1)+f(2)=3, f(3)=1 f(0)+f(1)+f(2)=3,f(3)=1,一定存在 η ∈ [ 0 , 2 ] \eta \in[0,2] η[0,2],使得 f ( η ) = f ( 0 ) + f ( 1 ) + f ( 2 ) 3 = 1 f(\eta)=\frac{f(0)+f(1)+f(2)}{3}=1 f(η)=3f(0)+f(1)+f(2)=1。所以 f ( η ) = f ( 3 ) = 1 f(\eta)=f(3)=1 f(η)=f(3)=1,根据罗尔中值定理,一定存在 ξ ∈ ( η , 3 ) ⊂ ( 0 , 3 ) \xi \in(\eta, 3) \subset(0,3) ξ(η,3)(0,3),满足 f ′ ( ξ ) = 0 f^{\prime}(\xi)=0 f(ξ)=0
证毕。

析:介值定理、微分中值定理(罗尔、柯西、朗格朗日)很容易出证明题,而且经常结合在一起,熟练运用这些定理并且熟悉这些定理使用的条件是解题的关键。

17、设函数 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上二阶可导, f ( 0 ) = f ( 1 ) f(0)=f(1) f(0)=f(1),且 ∣ f ′ ′ ( x ) ∣ ≤ 2 \left|f^{\prime \prime}(x)\right| \leq 2 f(x)2,证明: ∣ f ′ ( x ) ∣ ≤ 1 , ∀ x ∈ [ 0 , 1 ] \left|f^{\prime}(x)\right| \leq 1, \forall x \in[0,1] f(x)1,x[0,1]

解:任取 x 0 ∈ [ 0.1 ] x_{0} \in[0.1] x0[0.1],根据泰勒公式有:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ⋅ ( x − x 0 ) + 1 2 f ′ ′ ( ε ) x 0 2 f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}(\varepsilon) x_{0}^{2} f(x)=f(x0)+f(x0)(xx0)+21f(ε)x02 ε \varepsilon ε x 0 x_0 x0 x x x之间,将0和1代入: f ( 0 ) = f ( x 0 ) − f ′ ( x 0 ) x 0 + 1 2 f ′ ′ ( ε ) x 0 2 f(0)=f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) x_{0}+\frac{1}{2} f^{\prime \prime}(\varepsilon) x_{0}^{2} f(0)=f(x0)f(x0)x0+21f(ε)x02 f ( 1 ) = f ( x 0 ) + f ′ ( x 0 ) ⋅ ( 1 − x 0 ) + 1 2 f ′ ′ ( η ) ( 1 − x 0 ) 2 f(1)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(1-x_{0}\right)+\frac{1}{2} f^{\prime \prime}(\eta)\left(1-x_{0}\right)^{2} f(1)=f(x0)+f(x0)(1x0)+21f(η)(1x0)2根据条件两式相等,可得两个式子相减: − f ′ ( x 0 ) x 0 + 1 2 f ′ ′ ( ε ) x 0 2 − f ′ ( x 0 ) ( 1 − x 0 ) − 1 2 f ′ ( η ) ( 1 − x 0 2 ) = 0 -f^{\prime}\left(x_{0}\right) x_{0}+\frac{1}{2} f^{\prime \prime}(\varepsilon) x_{0}^{2}-f^{\prime}\left(x_{0}\right)\left(1-x_{0}\right)-\frac{1}{2} f^{\prime}(\eta)\left(1-x_{0}^{2}\right)=0 f(x0)x0+21f(ε)x02f(x0)(1x0)21f(η)(1x02)=0

⇒ f ′ ( x 0 ) = 1 2 [ f ′ ′ ( ε ) x 0 2 − f ′ ′ ( η ) ( 1 − x 0 2 ) ] ⇒ ∣ f ′ ( x 0 ) ∣ ≤ 1 2 ∣ ′ ′ f ( ε ) x 0 2 ∣ + 1 2 ∣ f ′ ′ ( η ) ( 1 − x 0 2 ) ∣ ≤ 1 2 × 2 × x 0 2 + 1 2 × 2 × ( 1 − x 0 2 ) = 1 \begin{aligned} \Rightarrow f^{\prime}\left(x_{0}\right) &=\frac{1}{2}\left[f^{\prime \prime}(\varepsilon) x_{0}^{2}-f^{\prime \prime}(\eta)\left(1-x_{0}^{2}\right)\right] \\ \Rightarrow\left|f^{\prime}\left(x_{0}\right)\right| & \leq\left.\frac{1}{2}\right|^{\prime \prime} f(\varepsilon) x_{0}^{2}\left|+\frac{1}{2}\right| f^{\prime \prime}(\eta)\left(1-x_{0}^{2}\right) \mid \\ & \leq \frac{1}{2} \times 2 \times x_{0}^{2}+\frac{1}{2} \times 2 \times\left(1-x_{0}^{2}\right) \\ &=1 \end{aligned} f(x0)f(x0)=21[f(ε)x02f(η)(1x02)]21f(ε)x02+21f(η)(1x02)21×2×x02+21×2×(1x02)=1
证毕。

析:一定要非常非常熟悉泰勒公式。

18、设实数 a 0 , a 1 , … , a n a_{0}, a_{1}, \ldots, a_{n} a0,a1,,an满足下面的不等式: a 0 + a 1 2 + ⋯ + a n n + 1 = 0 a_{0}+\frac{a_{1}}{2}+\cdots+\frac{a_{n}}{n+1}=0 a0+2a1++n+1an=0,证明方程 a 0 + a 1 x + ⋯ + a n x n = 0 a_{0}+a_{1} x+\cdots+a_{n} x^{n}=0 a0+a1x++anxn=0 [ 0 , 1 ] [0,1] [0,1]内至少存在一个实根。

解:设 f ( x ) = a 0 + a 1 x 1 + a 2 x 2 + ⋯ a n x n f(x)=a_{0}+a_{1} x_{1}+a_{2} x_{2}+\cdots a_{n} x^{n} f(x)=a0+a1x1+a2x2+anxn
同时设 g ( x ) = ∫ f ( x ) d x g(x)=\int f(x) d x g(x)=f(x)dx我们有: g ( 1 ) = a 0 + 1 2 a 1 + 1 3 a 2 + ⋯ 1 n + 1 a n = 0 g(1)=a_{0}+\frac{1}{2} a_{1}+\frac{1}{3} a_{2}+\cdots \frac{1}{n+1} a_{n}=0 g(1)=a0+21a1+31a2+n+11an=0
同时有: g ( 0 ) = 0 g(0)=0 g(0)=0

根据罗尔中值定理, g ( 0 ) = g ( 1 ) g(0)=g(1) g(0)=g(1),一定存在 ϵ ∈ [ 0 , 1 ] \epsilon \in [0,1] ϵ[0,1]满足 g ′ ( x ) = 0 g^{\prime}(x)=0 g(x)=0,即 a 0 + a 1 x + ⋯ + a n x n = 0 a_{0}+a_{1} x+\cdots+a_{n} x^{n}=0 a0+a1x++anxn=0 [ 0 , 1 ] [0,1] [0,1]存在零点。

19、设函数 f ( x ) f(x) f(x)对于一切 x ∈ ( − ∞ , + ∞ ) x \in(-\infty,+\infty) x(,+),存在 ( x − 1 ) f ′ ′ ( x ) + 2 ( x − 1 ) [ f ′ ( x ) ] 3 = 1 − e 1 − x (x-1) f^{\prime \prime}(x)+2(x-1)\left[f^{\prime}(x)\right]^{3}=1-e^{1-x} (x1)f(x)+2(x1)[f(x)]3=1e1x
(1)若 f ( x ) f(x) f(x)在点 a ( a ≠ 1 ) a(a \neq 1) a(a=1)处取得极值,证明它必定是极小值;
(2)若 f ( x ) f(x) f(x)在点 x = 1 x=1 x=1处取得极值,那么他是极大值还是极小值?

解:(1)由a是极值点可得 f ′ ( a ) = 0 f'(a)=0 f(a)=0,对于 ( x − 1 ) f ′ ′ ( x ) + 2 ( x − 1 ) [ f ′ ( x ) ] 3 = 1 − e 1 − x (x-1) f^{\prime \prime}(x)+2(x-1)\left[f^{\prime}(x)\right]^{3}=1-e^{1-x} (x1)f(x)+2(x1)[f(x)]3=1e1x,把 x = a x=a x=a代入得到:
( a − 1 ) f ′ ′ ( a ) = 1 − e 1 − x (a-1)f''(a)=1-e^{1-x} (a1)f(a)=1e1x
f ′ ′ ( a ) = 1 − e 1 − a a − 1 f''(a)=\frac{1-e^{1-a}}{a-1} f(a)=a11e1a
当a>1时,右侧分母大于0,分子大于0,因此二阶导数大于0;当a<1时,右侧分母小于0,分子小于0,因此二阶导数大于0。综上,f(x)在a处一阶导数等于0,二阶导数大于0,取得极小值。

20、讨论函数 f ( x ) = lim ⁡ n → ∞ 1 − x 2 n 1 + x 2 n x f(x)=\lim _{n \rightarrow \infty} \frac{1-x^{2 n}}{1+x^{2 n}} x f(x)=limn1+x2n1x2nx的连续性,若有间断点,则判别其类型。

解: f ( x ) = lim ⁡ n → ∞ 1 − x 2 n 1 + x 2 n x = { − x , ∣ x ∣ > 1 0 , ∣ x ∣ = 1 x , ∣ x ∣ < 1 f(x)=\lim _{n \rightarrow \infty} \frac{1-x^{2 n}}{1+x^{2 n}} x=\left\{\begin{array}{ll}-x, & |x|>1 \\ 0, & |x|=1 \\ x, & |x|<1\end{array}\right. f(x)=nlim1+x2n1x2nx=x,0,x,x>1x=1x<1

分段点x=-1: lim ⁡ x → − 1 f ( x ) = lim ⁡ x → − 1 ( − x ) = 1 lim ⁡ x → − 1 f ( x ) = lim ⁡ x → − 1 x = − 1 lim ⁡ x → − 1 f ( x ) ≠ lim ⁡ x → − 1 f ( x ) \begin{array}{l}\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1}(-x)=1 \\ \lim _{x \rightarrow-1}f(x)=\lim _{x \rightarrow-1} x=-1 \\ \lim _{x \rightarrow-1} f(x) \neq \lim _{x \rightarrow-1} f(x)\end{array} limx1f(x)=limx1(x)=1limx1f(x)=limx1x=1limx1f(x)=limx1f(x)
所以x=-1为第一类间断点

分段点x=1 lim ⁡ x → + 1 f ( x ) = lim ⁡ x → + 1 x = 1 lim ⁡ x → + 1 f ( x ) = lim ⁡ x → + 1 ( − x ) = − 1 lim ⁡ x → + 1 f ( x ) ≠ lim ⁡ x → + 1 f ( x ) \begin{array}{c}\lim _{x\rightarrow+1} f(x)=\lim _{x\rightarrow+1}x=1 \\ \lim _{x\rightarrow+1}f(x)=\lim _{x\rightarrow+1}(-x)=-1 \\ \lim _{x\rightarrow+1} f(x) \neq \lim _{x\rightarrow+1} f(x)\end{array} limx+1f(x)=limx+1x=1limx+1f(x)=limx+1(x)=1limx+1f(x)=limx+1f(x)

也是第一类间断点。

析: 考察的是基本的间断点的定义,认真一些就可以了。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值