ansys中的等效弹性应变到底如何计算?——泊松比的定义——ansys有些提示只是建议,不一定采纳。

ANSYS 应力和应变(EPTO)

ThreeS_tones

已于 2023-12-13 20:11:38 修改

阅读量2.9k
 收藏 15

点赞数11
分类专栏: ANSYS 文章标签: ansys 有限元分析
版权

ANSYS
专栏收录该内容
31 篇文章5 订阅
订阅专栏
 本文介绍了AnsysMechanical软件中关于应力和应变的计算方法,包括最大、中间和最小主应力、主应变、剪切应变、应力强度、弹性应变强度以及等效总应变和冯·米塞斯等效应力的概念和应用。这些概念在结构分析和设计中具有重要意义。
摘要由CSDN通过智能技术生成
目录

EPTO

应力和应变

Maximum, Middle, and Minimum Principal 最大、中间和最小主应力(主应变)

Intensity 强度

Equivalent Total Strain等效总应变

Equivalent (von Mises)冯·米塞斯等效应力(应变)

参考

EPTO


EPTO    X, Y, Z, XY, YZ, XZ   各方向总机械应变(不包括热应变),即EPEL + EPPL + EPCR
EPTO    1, 2, 3               总主机械应变
EPTO   INT                   总机械应变强度
EPTO   EQV                   总等效机械应变

[b]表示元素表选项(option)可用于此元素输出数据项。

应力和应变
应力解决方案允许您根据零件或整个组件的模型和材料以及特定的结构加载环境预测安全系数,应力,应变和位移。

一般的三维应力状态是根据与零件或装配世界坐标系对齐的三个法向和三个剪应力分量来计算的。

主应力和最大剪应力被称为不变量:也就是说,它们的值不依赖于零件或装配相对于其世界坐标系的方向。

主应力和最大剪应力可作为单独的结果。

得到了主应变ε1、ε2、ε3和最大剪切应变γmax。主应变的顺序为ε1> ε2> ε3。与主应力和最大剪切应力一样,主应变和最大剪切应变是不变量。

Maximum, Middle, and Minimum Principal 最大、中间和最小主应力(主应变)
根据弹性力学,绕着位于实体上或实体内任意点旋转一块无限小的体积,可以使应变状态变为:法向应力仍然存在,所有剪切应力都为零。 其中,三个法向应力称为主应力:

σ1 - 最大值
σ2 - 中
σ3 - 最小值

主应力(主应变)的排序总是 σ1 > σ2 > σ3。

Intensity 强度
应力强度定义为 σ1 - σ2、σ2 - σ3 或 σ3 - σ1 的绝对值中的最大值:

应力强度与最大剪应力有关:σI = 2τmax

弹性应变强度定义为 ε1 - ε2、ε2 - ε3 或 ε3 - ε1 绝对值中的最大值:

弹性应变强度等于最大剪切弹性应变:εI = γmax

等效应力(和等效弹性应变)和应力强度可显示为单独的结果。

注意:等效弹性应变的计算使用泊松比。 如果泊松比与温度有关,则使用物体主要部分参考温度下的泊松比值来计算等效弹性应变。

Equivalent Total Strain等效总应变
等效总应变给出了任何工程体的总应变值。将弹性应变、塑性应变、热应变和蠕变应变相加计算总应变分量,然后由总应变分量计算等效总应变。只有当其他三种应变结果中至少有一种可用于后处理时,此结果类型在机械中可用。在机械APDL中,这种应变称为总机械和热应变。

Equivalent (von Mises)冯·米塞斯等效应力(应变)
等效应力与主应力的关系式为:

等效应力(也称为冯米塞斯应力)经常用于设计工作,因为它允许任何任意三维应力状态表示为一个单一的正应力值。等效应力是最大等效应力破坏理论的一部分,用于预测韧性材料的屈服。

von Mises或等效应变εe计算为:

ν' =有效泊松比定义如下:

•材料在物体参考温度下计算的弹性应变和热应变的泊松比。

•0.5为塑性应变。

注意:目前,对于输出控制设置为模态解决方案下的扩展结果细节的链接MSUP分析,机械APDL求解器不计算等效应变。如果您选择显示等效应变结果,您将看到零轮廓。

参考
Stress and Strain - Mechanical Application 22.1 | Mechanical User’s Guide
Ansys 官方文档:Mechanical 中的应力和应变


 
————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/ThreeS_tones/article/details/134977556

泊松比(Poisson's ratio)是指材料在单向受拉或受压时,横向正应变与轴向正应变的比值,也叫横向变形系数,是反映材料横向变形的弹性常数‌。‌12

泊松比的公式为‌:
[ \sigma = \frac{\epsilon_{\text{transverse strain}}}{\epsilon_{\text{axial strain}} } ]
其中,( \sigma ) 是泊松比,( \epsilon_{\text{transverse strain}} ) 是横向应变,( \epsilon_{\text{axial strain}} ) 是轴向应变。泊松比的取值范围是0到0.5之间,当泊松比为0时,表示材料在受到外力作用时,只会沿一个方向上发生伸长或收缩,而在垂直方向上不会发生变化;当泊松比为0.5时,表示材料在受到外力作用时,在一个方向上的收缩或伸长与在另一个垂直方向上的膨胀或压缩之间的比例为1:1,材料的体积不变。

泊松比在材料力学中有着重要的应用。例如,在‌地震学中,泊松比与纵波速度和横波速度之间存在关系,通过这些速度可以计算泊松比。泊松比的变化反映了不同岩性和孔隙流体介质之间的差异。在地壳物质中,泊松比的高低与岩石的组成和状态有关,较高的泊松比可能指示岩石处于熔融状态,而较低的泊松比则表明岩石为固相。

ansys有些提示只是建议,不一定采纳。

Ansys10.0软件涉及到的名词翻译 SUB 矩阵 abbr 缩写 active 当前 add 增加 adius 心 aix-har谐单元 align 定位 ALP 热膨胀系数 amplitude 振幅 angular 角度 animate 动画 annotation 注释文字 apply 应用 arbitrary 任意的 arccosine 反余弦 archive 合并 arc-length 弧长 arcsine 反正弦 area 面积 areas面 area moment of inertia 面积惯性矩 array 矩阵 arrow 箭头 assembly 组件 attribute 属性 back up 恢复 behavior 特性 block 块 Booleans 布尔 box 框 by 通过 calc 运算 case 情况 cent 中心 centr 中心 circumscr 外接圆 cntrls 控制 comp 构件 complex variable 复数变量 component 构件 concrete 混凝土 cone 圆锥 consistent 固定 constrain 约束 contact 接触 constant 常数 contours 等值线,等位线 contour 轮廓 contraction 收缩因子 CONVERGENCE INDICATOR 收敛精度 CONVERGENCE VALUE 收敛值 coord 坐标 corner 对角 cornr 对角 count 总数 couple 耦合 coupled 耦合 coupling 耦合 create 创建 creep 蠕变 criteria 准则 cross product 向量积 cross-sectional 截面 CS 坐标系 ctr 中点 ctrls 控制 cupl 名词 耦合 curvature 圆弧 custom 定制 cylinder 圆柱 damper 阻尼器 damping 阻尼系数 DB DB dependent 相关 derivative 导数 design opt 优化设计 device 设备 differentiate 微分 dimensions 尺寸 discipline 练习 displacement 变形 dmx 最大位移,最大变形 display 显示 does not 没 DOF 自由度 dot product 点积 edge 边缘 electr 电磁 electromag 电磁 electromagnetic 电磁 elem 单元 element 单元 end 端 energy 能量 EPPL COMP 构件塑性应变分量 EPTO COMP 构件总应变 EPTO eqv 等效应变 eq 方程 eqn 方程 eqv 平均 equation 方程式 erase 删除
ANSYS有限元分析:带孔平板与无限长厚壁圆筒》是解决此类问题的理想资源。首先,要进行带孔平板的有限元分析,需要熟悉ANSYS的建模流程和分析步骤。建立模型时,可以按照以下步骤操作:定义材料属性,包括弹性模量和泊松比;通过布尔运算创建带有孔洞的平板几何模型;选择适合的单元类型(例如PLANE***单元类型)和单元行为选项;进行网格划分,特别是要注意孔洞边缘的网格细化以提高计算精度;施加适当的边界条件和外载荷;最后,执行求解并进行后处理以评估Mises应力分布。 参考资源链接:[ANSYS有限元分析:带孔平板与无限长厚壁圆筒](https://wenku.csdn.net/doc/2ieutqj1bw?spm=1055.2569.3001.10343) 在后处理阶段,Mises应力可以用来判断材料是否处于危险状态,它代表了等效应力的大小。在ANSYS中,Mises应力可以通过内置的等效应力计算公式得到,并通过等值线图直观地显示应力分布。通过以上步骤,可以有效地对带孔平板进行有限元分析,并用Von Mises应变评估其应力分布。为了深入理解整个分析过程,并掌握更多关于ANSYS操作的细节,推荐参考《ANSYS教程-通用变频器及其应用(第3版)满永奎2012》,这本书详细介绍了ANSYS软件的基本操作和应用实例,对理解ANSYS软件在工程分析中的应用非常有帮助。 参考资源链接:[ANSYS有限元分析:带孔平板与无限长厚壁圆筒](https://wenku.csdn.net/doc/2ieutqj1bw?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值