信息论笔记整理(二)

X 1 , . . . , X n X_{1},...,X_{n} X1,...,Xn独立同分布,n很大时,依概率

弱大数定理

1 n ∑ X i → E X \frac {1}{n}\sum X_{i}\rightarrow EX n1XiEX

渐进均分定理

− 1 n l o g p ( X 1 , . . . , X n ) → H ( X ) -\frac{1}{n}logp(X_{1},...,X_{n})\rightarrow H(X) n1logp(X1,...,Xn)H(X)

典型集

2 − n ( H ( X ) + ε ) ≤ p ( x 1 , . . . , x n ) ≤ 2 − n ( H ( X ) − ε ) 2^{-n(H(X)+\varepsilon )}\leq p(x_{1},...,x_{n})\leq 2^{-n(H(X)-\varepsilon )} 2n(H(X)+ε)p(x1,...,xn)2n(H(X)ε)

典型集性质
  • H ( X ) − ε ≤ − 1 n l o g p ( x 1 , . . . , x n ) ≤ H ( X ) + ε H(X)-\varepsilon \leq-\frac{1}{n}logp(x_{1},...,x_{n})\leq H(X)+\varepsilon H(X)εn1logp(x1,...,xn)H(X)+ε
  • P r { A ε ( n ) } > 1 − ε Pr\left\{ A_{\varepsilon}^{(n)} \right\}>1-\varepsilon Pr{Aε(n)}>1ε
    其中n充分大
  • ∣ A ε ( n ) ∣ ≤ 2 n ( H ( X ) + ε ) |A_{\varepsilon}^{(n)}|\leq 2^{n(H(X)+\varepsilon)} Aε(n)2n(H(X)+ε)
  • ∣ A ε ( n ) ∣ ≥ ( 1 − ε ) 2 n ( H ( X ) − ε ) |A_{\varepsilon}^{(n)}|\geq (1-\varepsilon)2^{n(H(X)-\varepsilon)} Aε(n)(1ε)2n(H(X)ε)
    其中n充分大
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值