背景
最近听了
八叉的一个ChatGPT讲座,讲的是如何将ChatGPT训练成领域专家,这样我们就可以用它来解决该领域的各种问题。
整个讲座中最让我印象深刻的就是训练方法,它是通过让ChatGPT向我们提问,然后由我们给出答案的方式进行训练。这和我日常使用ChatGPT的方法完全相反。
训练方法
第一步:输入已知需求
我们需要把当前已知的需求输入给ChatGPT。想象一下,当我们需要别人完成一项任务时,要做的第一件事就是向其介绍任务的基本情况。
第二步:让ChatGPT提问
在输入已知需求后,我们需要确认ChatGPT是否理解需求。这里最重要的是,要让ChatGPT在不理解需求时提出问题。这就像,在我们介绍完任务的基本情况后,总要问上一句,“有没有问题?”。
这是最关键的一步。ChatGPT能够帮助我们发现已知需求中的遗漏点,这通常能够引起我们更深层次的思考。
第三步:回答问题并再次让ChatGPT提问
在ChatGPT提出问题后,我们要先给出答案,然后回到第二步,看ChatGPT是否还有问题。这就像,在我们回答完别人的问题后,总要问上一句,“还有问题吗?”。
第四步:重复上述步骤直到ChatGPT没有问题
不断的重复第二步和第三步,直到ChatGPT没有任何问题。这是一个由扩散到收敛的过程,刚开始时问题会很多,但随着信息输入的增多,问题会越来越少。
第五步:输出完整需求
在ChatGPT没有任何问题后,我们可以让其输出一份它理解的完整需求。这份需求就是我们的领域模型,在输入