大语言模型 GPT历史文章中简介的大语言模型的的发展史,并且简要介绍了大语言模型的训练过程,本篇文章详细阐述训练的细节和相关的算法。
2020年后全球互联网大厂、AI创业公司研发了不少AI超大模型(百亿甚至千亿参数),典型代表是NLP领域的GPT-3,LlaMA,视觉领域的DALL*E2,Stable Diffusion以及V-MoE。现有的生成式AI工具大部分基于大厂研发的预训练模型,用针对特定场景的小数据进行Fine-Tune的模式快速迭代。
DALL-E2:DALL-E2是OpenAI在2021年提出的一种图像生成模型,它基于GPT-3的预训练模型,并使用自注意力机制来处理输入图像。DALL-E2可以生成高质量的图像,并且可以根据文本描述来生成图像。
Stable Diffusion:Stable Diffusion是Facebook AI Research在2021年提出的一种图像生成模型,它基于扩散过程和随机微分方程,并使用自注意力机制来处理输入图像。Stable Diffusion可以生成高质量的图像,并且可以进行无监督学习和控制生成图像的样式。
ChatGPT的训练过程分为如下四个步骤:
1.预训练(