标量衍射理论

本文详细介绍了标量衍射理论,包括引言、电磁理论、基尔霍夫衍射理论、角谱衍射理论以及菲涅尔衍射和夫琅禾费衍射。通过麦克斯韦方程组、惠更斯-菲涅尔原理和基尔霍夫衍射公式,阐述了光的衍射现象。同时,讨论了透镜傅里叶变换的性质,揭示了透镜在信息光学中的重要作用。
摘要由CSDN通过智能技术生成

标量衍射理论


引言

人类对于光的本质的认知:

几何光学
波动光学
量子光学

几何光学是在波长 λ → 0 \lambda \to 0 λ0时的理论。这时光线的传播轨迹为一条直线,这是波动光学的一级近似。
几何光学三大基本定律

  • 光的直线传播定律
  • 光的独立传播定律
  • 光的反射和折射定律

这些基本定律都可以通过费马原理来导出。

当波长不可忽略,这时在光空间中传播可以用惠更斯-菲涅尔原理来解释,即:任意时刻的光场是子波源产生球面波的相干叠加。光波的波前是子波源的包络面。惠更斯-菲涅尔原理可以成功解释光的反射和折射,但无法定量给出强度分布。并且惠更斯原理中的波是带有经典力学性质的机械波,与麦克斯为提出的电磁波理论不同。惠更斯假设是人类对光学现像的一个近似认识。

在历史的早期由于牛顿的权威地位,他提出的光的微粒假说一直受到推崇,对于光本性的探索停滞不前。直到1801杨氏进行了著名的双缝干涉实验,宣告光是一种波动现像。

1818年菲涅尔发展了惠更斯的思想,在杨氏实验证明光是一种波动的前提下,对于次级波源的相位和振幅进行了适当的假设,并且将光的纵波观点改成了横波观点。但菲涅尔理论中存在一个倾斜因子,无法解释其物理含义,理论存在缺陷。

1860年,麦克斯韦建立了其经典的电磁理论,并且预言了光是一种电磁波。而后基尔霍夫在更加坚实的数学基础上建立了比较完善的衍射理论模型。但该理论模型中的边界假设条件后来证明是不相容的,索末菲取消了其中之一的假设,利用格林函数修正了基尔霍夫理论,建立了瑞利-索末菲衍射理论。

这些理论都是线性近似理论,把光当成是标量,忽略了电磁场的适量性,电磁场通过麦克斯韦方程组相互作用。不能假定其相互无关,单独处理。但在满足一下两个条件是,标量衍射理论给出相当精确的结果。

1.衍射孔径比波长大的多
2.在太靠近衍射空的地方观察电磁场

当光在非自由空间传播(衍射受限)会发生明显的衍射现像,这是光波动性的必然结果。

不能用反射或折射解释的光学现像叫做衍射———索末菲

电磁理论

当介质中没有自由电荷存在时,麦克斯韦方程组:
(1) ∇ × E = − μ ∂ H ∂ t \nabla \times E=-\mu \frac{\partial H}{\partial t} \tag{1} ×E=μtH(1)

(2) ∇ × H = ε ∂ E ∂ t \nabla \times H= \varepsilon \frac{\partial E}{\partial t}\tag{2} ×H=εtE(2)

(3) ∇ ⋅ ε E = 0 \nabla \cdot \varepsilon E=0\tag{3} εE=0(3)

(4) ∇ ⋅ μ H = 0 \nabla \cdot \mu H=0\tag{4} μH=0(4)
根据矢量计量理论有
∇ × ( ∇ × E ) = ∇ ( ∇ ⋅ E ) − ∇ 2 E \nabla \times (\nabla\times E)=\nabla(\nabla\cdot E)-\nabla^2 E ×(×E)=(E)2E
带入(1)和(2)得到
∇ 2 E − n 2 c 2 ∂ 2 E ∂ t 2 = 0 \nabla^2 E-\frac{n^2}{c^2}\frac{\partial^2E}{\partial t^2}=0 2Ec2n2t22E=0
其中n表示介质的折射率,定义为
n = ( ε / ε 0 ) 1 / 2 n=(\varepsilon/\varepsilon_0)^{1/2} n=(ε/ε0)1/2
ε 0 \varepsilon_0 ε0为真空介电常数, c c c表示真空中的光速
c = 1 ε 0 μ 0 c=\frac{1}{\sqrt{\varepsilon_0\mu_0}} c=ε0μ0 1
利用已知的电磁常量 ε 0 = 8.8542 × 1 0 − 12 C 2 / ( N ⋅ m 2 ) \varepsilon_0=8.8542\times 10^{-12}C^2/(N\cdot m^2) ε0=8.8542×1012C2/(Nm2) μ 0 = 4 π × 1 0 − 7 N ⋅ S 2 / C 2 \mu_0=4\pi\times 10^{-7}N\cdot S^2/C^2 μ0=4π×107NS2/C2,即可算出

c = 2.99794 × 1 0 8 m / s c=2.99794\times 10^{8}m/s c=2.99794×108m/s

与实验测得的光速相吻合,说明了光是一种电磁波。

同理,得到磁场满足的波动方程
∇ 2 H − n 2 c 2 ∂ 2 H ∂ t 2 = 0 \nabla^2H-\frac{n^2}{c^2}\frac{\partial^2H}{\partial t^2}=0 2Hc2n2t22H=0
上述结论需假定,介质具有线性性,各向同性,均匀,无色散。

如果介质是非均匀,即 ε \varepsilon ε与空间位置有关,这时的波动方程为
∇ 2 E + 2 ∇ ( E ⋅ ∇ ln ⁡ n ) − n 2 c 2 ∂ 2 E ∂ t 2 = 0 \nabla^2E+2\nabla(E\cdot\nabla\ln n)-\frac{n^2}{c^2}\frac{\partial^2E}{\partial t^2}=0 2E+2(Elnn)c2n2t22E=0
空间中任意一点 Q Q Q的惠更斯-菲涅尔原理的数学表达式
U ( Q ) = c ∬ Σ U 0 ( P ) K ( θ ) e i k r r d S U(Q)=c\iint_{\Sigma}U_0(P)K(\theta)\frac{e^{ikr}}{r}\mathrm{d}S U(Q)=cΣU0(P)K(θ)reikrdS
其中, Σ \Sigma Σ是波面, U 0 ( P ) U_0(P) U0(P)是波面在 P P P的振幅, r r r是点 P P P Q Q Q点的距离, θ \theta θ P Q PQ PQ连线与波面法线的夹角。 K ( θ ) K(\theta) K(θ)是倾斜因子,表示与角度有关的函数。 c c c表示一个常量。
对于单色光场的任意一点 Q Q Q,满足波动方程
(5) ∇ 2 u − 1 c 2 ∂ 2 u ∂ t 2 = 0 \nabla^2u-\frac{1}{c^2}\frac{\partial^2u}{\partial t^2}=0 \tag{5} 2uc21t22u=0(5)
将复振动表示为
u ( Q , t ) = U ( Q ) e x p ( − j 2 π ν t ) u(Q,t)=U(Q)exp(-j2\pi \nu t) u(Q,t)=U(Q)exp(j2πνt)
带入到波动方程(5)中得到
(6) ( ∇ 2 + k 2 ) U ( Q ) = 0 (\nabla^2+k^2)U(Q)=0\tag{6} (2+k2)U(Q)=0(6)
该方程称作亥姆霍兹方程,亥姆霍兹方程与时间无关,表示单色场所满足的空间部分关系。

基尔霍夫衍射理论

基尔霍夫公式的推导

格林定理
Alt

如果 U U U P P P是任意位置的复值函数,并且具有连续单值的二阶偏导。则有
∭ V ( U ∇ 2 G − G ∇ 2 U ) d v = ∬ S ( U ∂ G ∂ n − G ∂ U ∂ n ) d s \iiint_V(U\nabla^2G-G\nabla^2U)\mathrm{d}v=\iint_{S}(U\frac{\partial G}{\partial n}-G\frac{\partial U}{\partial n})\mathrm{d}s V(U2GG2U)dv=S(UnGGnU)ds
设观察点为 P 0 P_0 P0,在格林公式中,选择自由空间格林函数作为辅助函数
G ( P 1 ) = j k r 01 r 01 G(P_1)=\frac{jkr_{01}}{r_{01}} G(P1)=r01jkr01
式中的 r 01 r_{01} r01代表着从点 P 0 P_0 P0到点 P 1 P_1 P1的距离。
为了排除奇异点,在点 P 0 P_0 P0的周围用足够小的面将其包裹,这样和原来的面 S S S构成一个复合平面
S ′ = S + S ϵ S^{'}=S+S_\epsilon S=S+Sϵ
在面所包围的体积内,格林函数满足亥姆霍兹方程
( ∇ 2 + k 2 ) G = 0 (\nabla^2+k^2)G=0 (2+k2)G=0
代入到格林公式中有
∬ S ′ ( U ∂ G ∂ n − G ∂ U ∂ n ) d s \iint_{S^{'}}(U\frac{\partial G}{\partial n}-G\frac{\partial U}{\partial n})\mathrm{d}s S(UnGGnU)ds
在面 S ′ S^{'} S上的一般点
G ( P 1 ) = e x p ( j k r 01 ) r 01 G(P_1)=\frac{exp(jkr_{01})}{r_{01}} G(P1)=r01exp(jkr01)
以及
∂ G ( P 1 ) ∂ n = cos ⁡ ( n , r 01 ) ( j k − 1 r 01 ) e x p ( j k r 01 ) r 01 \frac{\partial G(P_1)}{\partial n}=\cos(n,r_{01})(jk-\frac{1}{r_{01}})\frac{exp(jkr_{01})}{r_{01}} nG(P1)=cos(n,r01)(jkr011)r01exp(jkr01)
最后让 ϵ \epsilon ϵ任意小,并利用在 P 0 P_0 P0的连续性得到
U ( P 0 ) = 1 4 π ∬ S { ∂ U ∂ n [ e x p ( j k r 01 ) r 01 ] − U ∂ ∂ n [ e x p ( j k r 01 ) r 01 ] } d s U(P_0)=\frac{1}{4\pi}\iint_S \Big\{\frac{\partial U}{\partial n}\left[\frac{exp(jkr_{01})}{r_{01}}\right]-U\frac{\partial}{\partial n}\left[\frac{exp(jkr_{01})}{r_{01}}\right]\Big\}\mathrm{d}s U(P0)=4π1</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值