理论学习:标量衍射理论(一)

从矢量理论到标量理论

Maxwell方程组是矢量理论的基础和出发点,当空间中没有自由电荷时,Maxwell方程组可以表示为:

Maxwell方程组
Maxwell方程组

其中\vec{E}为介质中的电场,\vec{H}为介质中的磁场。\left (E_{x},E_{y},E_{z} \right )则表示电场矢量沿坐标轴x,y,z方向的分量,\left ( H_{x},H_{y},H _{z}\right )表示磁场矢量沿坐标轴x,y,z方向的分量。\varepsilon ,\mu分别为介电张量和磁导率。算子\triangledown表示为:

                                                         

\triangledown =\frac{\partial }{\partial x}\vec{i}+\frac{\partial }{\partial y}\vec{j}+\frac{\partial }{\partial z}\vec{k}

可执行三种运算,分别是求梯度(\triangledown A)、旋度(\triangledown \times \vec{A})和散度(\triangledown \cdot \vec{A}

光波在介质中传播时,如果介质具有线性性质,说明介质是线性的;如果介质对光波的响应与电场和磁场的偏振方向无关,说明介质是各向同性的;如果介电张量在光波传播的区域内处处相等(为常数),说明介质是均匀的,如果介质对光波的响应与光的波长无关,说明介质是无色散的。

假设光波在线性、各向同性、均匀且无色散的介质中传播,可由上述Maxwell方程推导得到矢量波动方程。

根据矢量恒等式                         

\triangledown \times \left ( \triangledown \times \vec{E} \right )=\triangledown \left ( \triangledown \cdot \vec{E} \right )-\triangledown ^{2}\vec{E}

对上述Maxwell方程组的第四项做旋度运算,并代入第一项和第三项,可得:

                                                            

\triangledown ^{2}\vec{E}-\mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}=0

介质大多是非磁性的,磁导率与真空中的磁导率近似相等,\mu =\mu _{0}。介质中的折射率可以表示为n=\sqrt{\frac{\varepsilon }{\varepsilon _{0}}},其中\varepsilon _{0}为真空中的介电常数。则\mu \varepsilon =n^{2}\mu _{0}\varepsilon _{0},真空中的光速c=\sqrt{\frac{1}{\mu _{0}\varepsilon _{0}}},那么上述电场矢量波动方程可以表示为:

                                                            

\triangledown ^{2}\vec{E}-\frac{n^{2}}{c^{2}}\frac{\partial^2\vec{E} }{\partial t^2}=0

同样,磁场的矢量波动方程可以表示为:

                                                           

\triangledown ^{2}\vec{H}-\frac{n^{2}}{c^{2}}\frac{\partial^2\vec{H} }{\partial t^2}=0

这两个波动方程为线性方程,每个分量均遵循此方程,不存在分量之间相互耦合的项,那么可以用标量波动方程统一表示为:

                                                       

\triangledown ^{2}u(r,t)-\frac{n^{2}}{c^{2}}u(r,t)=0

u\left ( r,t \right )为电场与磁场矢量的任一分量,与空间位置r和时间变量t均相关。该表达式便实现了从矢量理论到标量理论的转化,但是这是在非常理想的条件下得到的,即假设了介质是线性、各向同性、均匀且非色散的,但实际上很难找到同时满足上述条件的介质。所以在一般的介质中该标量波动方程只能作为一种近似。

例如,当光波在介质中传播区域的介电张量不相等时,矢量波动方程则需改写为:

                                              

\triangledown ^{2}\vec{E}+2\triangledown (\vec{E}\cdot \triangledown \ln n)-\frac{n^{2}}{c^{2}}\frac{\partial^2\vec{E} }{\partial t^2}=0

推导过程如下所示:

推导过程

与理想情况下的矢量波动方程相比,中间多了各分量相互耦合的项,无法用标量去代替。在这种情况下,只能采取一定程度的近似。

另外,若光波在一种均匀的介质中传播,在两种介质的分界面上,由于边界条件的存在使得电场矢量与磁场矢量之间会发生一定程度的耦合,其各分量也同样会耦合,这时也需要采取一定程度的近似才能得到与实际情况偏差不大的标量波动方程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值