光的衍射
惠更斯原理
惠更斯原理:认为光波面上的每一个点都可以看作是一个次波的中心,发出子波;在后一个时刻这些子波的包络面就是新的波面。如图,利用惠更斯原理能说明光的衍射现象的存在,但是无法确定衍射后光强的分布。
惠更斯-菲涅尔原理
惠更斯-菲涅尔原理将波阵面上的每一个面元看做次级源波,波场中任意一点的光场,是所有次级源波发出的次级波在该场点的相干叠加。如图
按照惠更斯-菲涅尔原理,波面上的面元dS发出的子波,在空间P出产生的光场振幅为dU;则空间P处的光场为所有子波的相干叠加
U
(
P
)
=
∯
d
U
(
p
)
U(P)=\oiint dU(p)
U(P)=∬dU(p)当面元dS足够小的时候,可以认为面元是点光源,产生的次级波为球面波,传播到P点的振幅为
d
U
(
p
)
=
a
r
e
i
k
r
dU(p)=\frac{a}{r}e^{ikr}
dU(p)=raeikrr为Q-p点的距离,系数a与面元dS和Q处的复振幅U(Q)有关,成正比。所以有
U
(
p
)
=
∯
d
U
(
p
)
=
C
U
(
Q
)
∯
K
(
θ
)
e
i
k
r
r
d
s
U(p)=\oiint dU(p)=CU(Q)\oiint K(\theta)\frac{e^{ikr}}{r} ds
U(p)=∬dU(p)=CU(Q)∬K(θ)reikrds其中C是比例系数,
K
(
θ
)
K(\theta)
K(θ)是子波面元的振幅,随着面元的法线与QP夹角的变化而变化,称为倾斜因子。倾斜因子
K
(
θ
)
K(\theta)
K(θ)有最大值为1,随着
θ
\theta
θ的增大,
K
(
θ
)
K(\theta)
K(θ)迅速减小,当
θ
\theta
θ小于
π
/
2
\pi/2
π/2时,
K
(
θ
)
K(\theta)
K(θ)=0.U(Q)为波面上Q点处的光强为
U
(
Q
)
=
A
r
e
i
k
r
U(Q)=\frac{A}{r}e^{ikr}
U(Q)=rAeikr
线性系统
线性系统将复杂的信号分解为许多基本的信号,这些基本的信号,叫做基元信号,在傅里叶分析中基元信号为正弦信号。对于一个二维系统,其输入为 u ( x , y ) u(x,y) u(x,y),输出信号为 g ( x , y ) g(x,y) g(x,y)
在数学上可以表示为:
g
(
x
,
y
)
=
O
(
u
(
x
,
y
)
)
g(x,y)=O(u(x,y))
g(x,y)=O(u(x,y))O表示输入和输出间的映射关系,即函数关系。对于线性系统有:
O
(
a
1
u
1
(
x
,
u
)
+
a
2
u
2
(
x
,
u
)
)
=
O
(
a
1
u
1
(
x
,
u
)
)
+
O
(
a
2
u
2
(
x
,
u
)
)
O(a_1u_1(x,u)+a_2u_2(x,u))=O(a_1u_1(x,u))+O(a_2u_2(x,u))
O(a1u1(x,u)+a2u2(x,u))=O(a1u1(x,u))+O(a2u2(x,u))假设输入在
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1)处输入信号为脉冲函数
δ
\delta
δ函数
δ
(
x
1
,
y
1
)
\delta(x_1,y_1)
δ(x1,y1),其在
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1)处的输出为:
h
(
x
,
y
;
x
1
,
y
1
)
=
O
(
δ
(
x
−
x
1
,
y
−
y
1
)
)
h(x,y;x_1,y_1)=O(\delta(x-x_1,y-y_1))
h(x,y;x1,y1)=O(δ(x−x1,y−y1))
h
(
x
,
y
;
x
1
,
y
1
)
h(x,y;x_1,y_1)
h(x,y;x1,y1)函数被称为系统的响应函数。
δ
\delta
δ函数的筛选性质允许把任意的输入
u
(
x
,
y
)
u(x,y)
u(x,y)表示为
u
(
x
,
y
)
=
∬
−
∞
+
∞
u
(
x
1
,
y
1
)
δ
(
x
−
x
1
,
y
−
y
1
)
d
x
1
d
y
1
u(x,y)=\iint^{+\infty}_{-\infty}u(x_1,y_1)\delta(x-x_1,y-y_1)dx_1dy_1
u(x,y)=∬−∞+∞u(x1,y1)δ(x−x1,y−y1)dx1dy1
如果一个系统输入的平移会使得输出产生相同的平移,则称这个系统为平移不变的线性系统,有:
g
(
x
,
y
)
=
∬
−
∞
+
∞
u
(
x
1
,
y
1
)
O
(
δ
(
x
−
x
1
,
y
−
y
1
)
)
d
x
1
d
y
1
=
∬
−
∞
+
∞
u
(
x
1
,
y
1
)
h
(
x
−
x
1
,
y
−
y
1
)
d
x
1
d
y
1
=
∬
−
∞
+
∞
h
(
x
1
,
y
1
)
u
(
x
−
x
1
,
y
−
y
1
)
d
x
1
d
y
1
g(x,y)=\iint^{+\infty}_{-\infty}u(x_1,y_1)O(\delta(x-x_1,y-y_1))dx_1dy_1\\=\iint^{+\infty}_{-\infty}u(x_1,y_1)h(x-x_1,y-y_1)dx_1dy_1\\=\iint^{+\infty}_{-\infty}h(x_1,y_1)u(x-x_1,y-y_1)dx_1dy_1
g(x,y)=∬−∞+∞u(x1,y1)O(δ(x−x1,y−y1))dx1dy1=∬−∞+∞u(x1,y1)h(x−x1,y−y1)dx1dy1=∬−∞+∞h(x1,y1)u(x−x1,y−y1)dx1dy1这是一个
h
(
x
,
y
)
h(x,y)
h(x,y)和
u
(
x
,
y
)
u(x,y)
u(x,y)相关的卷积式,所以有
g
(
x
,
y
)
=
h
(
x
,
y
)
∗
u
(
x
,
y
)
g(x,y)=h(x,y)*u(x,y)
g(x,y)=h(x,y)∗u(x,y)用卷积和傅里叶变换的关系,上式可以写作
G
(
f
x
,
f
y
)
=
H
(
f
x
,
f
y
)
U
(
f
x
,
f
y
)
G(f_x,f_y)=H(f_x,f_y)U(f_x,f_y)
G(fx,fy)=H(fx,fy)U(fx,fy)
G
(
f
x
,
f
y
)
,
H
(
f
x
,
f
y
)
,
U
(
f
x
,
f
y
)
G(f_x,f_y),H(f_x,f_y),U(f_x,f_y)
G(fx,fy),H(fx,fy),U(fx,fy)是
g
(
x
,
y
)
,
h
(
x
,
y
)
,
u
(
x
,
y
)
g(x,y),h(x,y),u(x,y)
g(x,y),h(x,y),u(x,y)的傅里叶变换。其中
H
(
f
x
,
f
y
)
=
∬
−
∞
+
∞
h
(
x
,
y
)
e
−
i
2
π
(
f
x
x
+
f
y
y
)
d
x
d
y
H(f_x,f_y)=\iint^{+\infty}_{-\infty}h(x,y)e^{-i2\pi (f_xx+f_yy)}dxdy
H(fx,fy)=∬−∞+∞h(x,y)e−i2π(fxx+fyy)dxdy上式叫做系统的传递函数。
在离散系统中,点
(
x
,
y
)
(x,y)
(x,y)被采样为
[
Δ
x
⋅
m
,
,
Δ
y
⋅
n
]
[\Delta x\cdot m,,\Delta y \cdot n]
[Δx⋅m,,Δy⋅n],
Δ
x
,
Δ
y
\Delta x,\Delta y
Δx,Δy是在x和y方向上的采用间隔,可以简单的将
[
Δ
x
⋅
m
,
,
Δ
y
⋅
n
]
[\Delta x\cdot m,,\Delta y \cdot n]
[Δx⋅m,,Δy⋅n]表示为
[
m
,
n
]
[m,n]
[m,n]。有
g
[
m
,
n
]
=
O
(
u
[
m
,
n
]
)
=
∑
m
1
=
−
∞
∞
∑
n
1
=
−
∞
∞
h
[
m
1
,
n
1
]
u
[
m
−
m
1
,
n
−
n
1
]
g[m,n]=O(u[m,n])\\=\displaystyle\sum_{m_1=-\infty}^\infty\displaystyle\sum_{n_1=-\infty}^\infty h[m_1,n_1]u[m-m_1,n-n_1]
g[m,n]=O(u[m,n])=m1=−∞∑∞n1=−∞∑∞h[m1,n1]u[m−m1,n−n1]离散线性平移不变系统的传递函数为
H
(
f
x
,
f
y
)
=
∑
m
1
=
−
∞
∞
∑
n
1
=
−
∞
∞
h
[
m
1
,
n
1
]
e
−
i
2
π
(
f
x
m
1
Δ
x
+
f
y
n
1
Δ
y
)
)
H(f_x,f_y)=\displaystyle\sum_{m_1=-\infty}^\infty\displaystyle\sum_{n_1=-\infty}^\infty h[m_1,n_1]e^{-i2\pi(f_xm_1\Delta x+f_yn_1\Delta y))}
H(fx,fy)=m1=−∞∑∞n1=−∞∑∞h[m1,n1]e−i2π(fxm1Δx+fyn1Δy))卷积定理如上。
傅里叶变换
对于信号 u ( t ) u(t) u(t)其傅里叶变换为 U ( f ) = ∫ − ∞ + ∞ u ( t ) e − i 2 π f t d f U(f)=\int^{+\infty}_{-\infty}u(t)e^{-i2\pi ft}df U(f)=∫−∞+∞u(t)e−i2πftdff为频率,其逆变换为 u ( t ) = ∫ − ∞ + ∞ U ( f ) e i 2 π f t d t u(t)=\int^{+\infty}_{-\infty}U(f)e^{i2\pi ft}dt u(t)=∫−∞+∞U(f)ei2πftdt对于二维信号u(x,y), − ∞ ⩽ x , y ⩽ ∞ -\infty\leqslant x,y\leqslant\infty −∞⩽x,y⩽∞,其二维傅里叶变换为 U ( f x , f y ) = ∬ − ∞ + ∞ u ( x , y ) e − i 2 π ( f x x + f y y ) d x d y U(f_x,f_y)=\iint^{+\infty}_{-\infty}u(x,y)e^{-i2\pi (f_xx+f_yy)}dxdy U(fx,fy)=∬−∞+∞u(x,y)e−i2π(fxx+fyy)dxdy f x , f y f_x,f_y fx,fy分别是x方向和y方向上的频率。其逆变换为 u ( x , y ) = ∬ − ∞ + ∞ U ( f x , f y ) e i 2 π ( f x x + f y y ) d f x d f y u(x,y)=\iint^{+\infty}_{-\infty}U(f_x,f_y)e^{i2\pi (f_xx+f_yy)}df_xdf_y u(x,y)=∬−∞+∞U(fx,fy)ei2π(fxx+fyy)dfxdfy
衍射的角谱理论
对于单色电磁波电磁矢量表示为
E
(
r
,
t
)
=
U
(
r
)
e
−
i
w
t
\boldsymbol{E}(\boldsymbol{r},t)=U(r)e^{-iwt}
E(r,t)=U(r)e−iwt同时相量
U
(
r
)
U(r)
U(r)满足亥姆霍兹方程
(
∇
2
+
k
2
)
U
(
r
)
=
0
(\nabla^2+k^2)U(r)=0
(∇2+k2)U(r)=0
k
=
2
π
λ
k=\frac{2\pi}{\lambda}
k=λ2π设衍射屏和观察屏的距离为
z
,
U
Q
(
x
,
y
)
和
U
P
(
x
,
y
)
z,U_Q(x,y)和U_P(x,y)
z,UQ(x,y)和UP(x,y)分别为衍射屏和观察屏上的相量。在频域上,他们的频谱函数为
G
Q
(
f
x
,
f
y
)
,
和
G
P
(
f
x
,
f
y
)
G_Q(f_x,f_y),和G_P(f_x,f_y)
GQ(fx,fy),和GP(fx,fy)。所以有
G
Q
(
f
x
,
f
y
)
=
∬
−
∞
+
∞
U
Q
(
x
,
y
)
e
−
i
2
π
(
f
x
x
+
f
y
y
)
d
x
d
y
G
P
(
f
x
,
f
y
)
=
∬
−
∞
+
∞
U
P
(
x
,
y
)
e
−
i
2
π
(
f
x
x
+
f
y
y
)
d
x
d
y
G_Q(f_x,f_y)=\iint^{+\infty}_{-\infty}U_Q(x,y)e^{-i2\pi (f_xx+f_yy)}dxdy\\G_P(f_x,f_y)=\iint^{+\infty}_{-\infty}U_P(x,y)e^{-i2\pi (f_xx+f_yy)}dxdy
GQ(fx,fy)=∬−∞+∞UQ(x,y)e−i2π(fxx+fyy)dxdyGP(fx,fy)=∬−∞+∞UP(x,y)e−i2π(fxx+fyy)dxdy所以
U
p
(
x
,
y
)
U_p(x,y)
Up(x,y)是G_P(f_x,f_y)的逆傅里叶变换。所以有
U
P
(
x
,
y
)
=
∬
−
∞
+
∞
G
P
(
f
x
,
f
y
)
e
i
2
π
(
f
x
x
+
f
y
y
)
d
x
d
y
U_P(x,y)=\iint^{+\infty}_{-\infty}G_P(f_x,f_y)e^{i2\pi (f_xx+f_yy)}dxdy
UP(x,y)=∬−∞+∞GP(fx,fy)ei2π(fxx+fyy)dxdy将其带入亥姆霍兹方程,并注意到在所有的无源点上,U都要满足亥姆霍兹方程得
(
∇
2
+
k
2
)
G
P
(
f
x
,
f
y
)
e
i
2
π
(
f
x
x
+
f
y
y
)
=
0
(\nabla^2+k^2)G_P(f_x,f_y)e^{i2\pi (f_xx+f_yy)}=0
(∇2+k2)GP(fx,fy)ei2π(fxx+fyy)=0运算和整理得到
G
P
(
f
x
,
f
y
)
=
G
Q
(
f
x
,
f
y
)
e
i
2
π
z
λ
1
−
(
λ
f
x
)
2
−
(
λ
f
y
)
2
G_P(f_x,f_y)=G_Q(f_x,f_y)e^{i\frac{2\pi z}{\lambda}\sqrt{1-(\lambda f_x)^2-(\lambda f_y)^2}}
GP(fx,fy)=GQ(fx,fy)eiλ2πz1−(λfx)2−(λfy)2
G
Q
(
f
x
,
f
y
)
G_Q(f_x,f_y)
GQ(fx,fy)是方程在
z
z
z=0处的特解。这个关系标表明,光波沿
z
z
z轴传播的结果,在频域上表现为将衍射屏上光波的频谱
G
Q
(
f
x
,
f
y
)
G_Q(f_x,f_y)
GQ(fx,fy)乘以一个与
z
z
z有关的相位延迟因子
e
i
2
π
z
λ
1
−
(
λ
f
x
)
2
−
(
λ
f
y
)
2
e^{i\frac{2\pi z}{\lambda}\sqrt{1-(\lambda f_x)^2-(\lambda f_y)^2}}
eiλ2πz1−(λfx)2−(λfy)2。光波在自由空间中由衍射屏到观测屏的传播过程,在频域上等效于通过一个半径为
1
/
λ
1/\lambda
1/λ的理想低通滤波器。
引用傅里叶变换符号,可以将光波衍射的计算过程写成
U
P
(
x
,
y
,
z
)
=
F
−
1
[
F
[
U
P
(
x
,
y
)
]
e
i
2
π
z
λ
1
−
(
λ
f
x
)
2
−
(
λ
f
y
)
2
]
U_P(x,y,z)=\mathscr{F}^{-1}[\mathscr{F}[U_P(x,y)]e^{i\frac{2\pi z}{\lambda}\sqrt{1-(\lambda f_x)^2-(\lambda f_y)^2}}]
UP(x,y,z)=F−1[F[UP(x,y)]eiλ2πz1−(λfx)2−(λfy)2]
F
\mathscr{F}
F为傅里叶变换符号。
基尔霍夫衍射
从前面我们知道,单色电磁波电磁矢量表示为
E
(
r
,
t
)
=
U
(
r
)
e
−
i
w
t
\boldsymbol{E}(\boldsymbol{r},t)=U(r)e^{-iwt}
E(r,t)=U(r)e−iwt同时相量
U
(
r
)
U(r)
U(r)满足亥姆霍兹方程
(
∇
2
+
k
2
)
U
(
r
)
=
0
(\nabla^2+k^2)U(r)=0
(∇2+k2)U(r)=0对于
∭
V
(
U
∇
2
G
−
G
∇
2
U
)
d
V
=
∭
V
∇
⋅
(
U
∇
G
−
G
∇
U
)
d
V
利
用
高
斯
公
式
有
上
式
=
∬
S
(
U
∇
G
−
G
∇
U
)
d
S
=
∬
S
(
U
∂
G
∂
n
−
G
∂
U
∂
n
)
d
S
\iiint_V(U\nabla^2G-G\nabla^2U)dV=\iiint_V\nabla \cdot(U\nabla G-G\nabla U)dV\\利用高斯公式有上式=\iint_S (U\nabla G-G\nabla U)dS\\=\iint_S (U\frac{\partial G}{\partial n}-G\frac{\partial U}{\partial n})dS
∭V(U∇2G−G∇2U)dV=∭V∇⋅(U∇G−G∇U)dV利用高斯公式有上式=∬S(U∇G−G∇U)dS=∬S(U∂n∂G−G∂n∂U)dS这就是格林公式S为一闭合曲面,
∂
∂
n
\frac{\partial }{\partial n}
∂n∂是沿法线方向的微分,G为格林函数。
如果取格林函数
G
=
e
i
k
r
r
G=\frac{e^{ikr}}{r}
G=reikr,r为P点到曲面S的距离,此时整个曲面上,除了P点都应该满足亥姆霍兹方程。我们绕P点做一个微小的球面S’,在S’和S直接所围的体积中应用格林公式。G和U满足姆霍兹方程:
(
∇
2
+
k
2
)
U
=
0
(\nabla^2+k^2)U=0
(∇2+k2)U=0
(
∇
2
+
k
2
)
G
=
0
(\nabla^2+k^2)G=0
(∇2+k2)G=0有
∭
V
(
U
∇
2
G
−
G
∇
2
U
)
d
V
=
∭
V
[
U
(
∇
2
G
+
k
G
)
−
G
(
∇
2
U
+
k
U
]
d
V
=
0
\iiint_V(U\nabla^2G-G\nabla^2U)dV=\iiint_V[U(\nabla^2G+kG)-G(\nabla^2U+kU]dV=0
∭V(U∇2G−G∇2U)dV=∭V[U(∇2G+kG)−G(∇2U+kU]dV=0由格林公式得
∬
s
+
s
′
(
U
∂
G
∂
n
−
G
∂
U
∂
n
)
d
S
=
0
\iint_{s+s'}(U\frac{\partial G}{\partial n}-G\frac{\partial U}{\partial n})dS=0
∬s+s′(U∂n∂G−G∂n∂U)dS=0即
∬
s
(
U
∂
G
∂
n
−
G
∂
U
∂
n
)
d
S
=
−
∬
s
′
(
U
∂
G
∂
n
−
G
∂
U
∂
n
)
d
S
\iint_{s}(U\frac{\partial G}{\partial n}-G\frac{\partial U}{\partial n})dS=-\iint_{s'}(U\frac{\partial G}{\partial n}-G\frac{\partial U}{\partial n})dS
∬s(U∂n∂G−G∂n∂U)dS=−∬s′(U∂n∂G−G∂n∂U)dS在平面S’上
G
=
e
i
k
r
′
/
r
′
G=e^{ikr'}/r'
G=eikr′/r′对其求导为
∂
G
∂
r
′
=
c
o
s
(
n
′
,
r
′
)
(
i
k
−
1
r
′
)
e
i
k
r
′
r
′
\frac{\partial G}{\partial r'}=cos(\boldsymbol{n}',\boldsymbol{r}')(ik-\frac{1}{r'})\frac{e^{ikr'}}{r'}
∂r′∂G=cos(n′,r′)(ik−r′1)r′eikr′
r
′
\boldsymbol{r}'
r′表示P到曲面S’上任一点矢量,
c
o
s
(
n
′
,
r
′
)
cos(\boldsymbol{n}',\boldsymbol{r}')
cos(n′,r′)表示面元法向矢量与位置矢量的余弦夹角,对于此有法向量向内,所以
c
o
s
(
n
′
,
r
′
)
=
−
1
cos(\boldsymbol{n}',\boldsymbol{r}')=-1
cos(n′,r′)=−1。所以有
∬
s
′
(
U
∂
G
∂
n
−
G
∂
U
∂
n
)
d
S
=
4
π
r
′
2
(
U
(
P
)
e
i
k
r
′
r
′
(
i
k
−
1
r
′
)
−
∂
U
(
P
)
∂
n
e
i
k
r
′
r
′
)
\iint_{s'}(U\frac{\partial G}{\partial n}-G\frac{\partial U}{\partial n})dS=4\pi r'^2(U(P)\frac{e^{ikr'}}{r'}(ik-\frac{1}{r'})-\frac{\partial U(P)}{\partial n}\frac{e^{ikr'}}{r'})
∬s′(U∂n∂G−G∂n∂U)dS=4πr′2(U(P)r′eikr′(ik−r′1)−∂n∂U(P)r′eikr′)当
r
′
r'
r′趋于0时有
∬
s
′
(
U
∂
G
∂
n
−
G
∂
U
∂
n
)
d
S
=
4
π
U
(
P
)
\iint_{s'}(U\frac{\partial G}{\partial n}-G\frac{\partial U}{\partial n})dS=4\pi U(P)
∬s′(U∂n∂G−G∂n∂U)dS=4πU(P)所以可以得到
U
(
P
)
=
1
4
π
∬
s
(
e
i
k
r
r
∂
U
∂
n
−
U
∂
∂
n
(
e
i
k
r
r
)
)
d
S
U(P)=\frac{1}{4\pi}\iint_s(\frac{e^{ikr}}{r}\frac{\partial U}{\partial n}-U\frac{\partial }{\partial n}(\frac{e^{ikr}}{r}))dS
U(P)=4π1∬s(reikr∂n∂U−U∂n∂(reikr))dS这就是基尔霍夫衍射定理。它的意义在于:把在封闭曲面S内的任意一点P的电场场强
U
(
P
)
U(P)
U(P)用曲面上的场强U和
∂
U
∂
n
\frac{\partial U}{\partial n}
∂n∂U表示出来,实际上就是惠更斯-菲涅尔衍射的另外一种数学表示。曲面上的每一个点都是一个光源,发出子波,而曲面内的点的场强取决于这些子波的叠加。
基尔霍夫衍射公式的应用
将基尔霍夫定理应用在小孔衍射中,如图,

光源O发出一束光通过小孔,在小孔后有任意一点P,为了应用基尔霍夫定理,需要选取一个包围P的闭合曲面。以P点为圆心,R为半径做一个球面s,这样球面s、遮光板s1和小孔s2形成一个闭合曲面,我们可以使用基尔霍夫定理。所以P点的相量 U ( P ) U(P) U(P)可以表示为 U ( P ) = 1 4 π ∬ s + s 1 + s 2 ( e i k r r ∂ U ∂ n − U ∂ ∂ n ( e i k r r ) ) d S U(P)=\frac{1}{4\pi}\iint_{s+s_1+s_2}(\frac{e^{ikr}}{r}\frac{\partial U}{\partial n}-U\frac{\partial }{\partial n}(\frac{e^{ikr}}{r}))dS U(P)=4π1∬s+s1+s2(reikr∂n∂U−U∂n∂(reikr))dS只要确定好了s,s1和s2三个曲面上的相量U和 ∂ U ∂ n \frac{\partial U}{\partial n} ∂n∂U就可以得到P点的坐标。显然在曲面S1没有光强分布,所以只需要计算s2和s上的光强对P点的影响。在s2曲面上,其相量 U ( P ) U(P) U(P)由入射光确定,即 U s 2 = A e i k r 0 r 0 ∂ U s 2 ∂ n = c o s ( n , r 0 ) ( i k − 1 r 0 ) e i k r 0 r 0 U_{s2}=\frac{Ae^{ikr_0}}{r_0}\\\frac{\partial U_{s2}}{\partial n}=cos(\boldsymbol{n},\boldsymbol{r_0})(ik-\frac{1}{r_0})\frac{e^{ikr_0}}{r_0} Us2=r0Aeikr0∂n∂Us2=cos(n,r0)(ik−r01)r0eikr0 c o s ( n , r 0 ) cos(\boldsymbol{n},\boldsymbol{r_0}) cos(n,r0)为外法向量 n \boldsymbol{n} n与矢量 r 0 \boldsymbol{r_0} r0夹角的余弦值。在s上面,有r=R, c o s ( n , r ) cos(\boldsymbol{n},\boldsymbol{r}) cos(n,r)=1,有 1 4 π ∬ s 2 ( e i k R R ∂ U ∂ n − U ∂ ∂ n ( e i k R R ) ) d s 2 \frac{1}{4\pi}\iint_{s_2}(\frac{e^{ikR}}{R}\frac{\partial U}{\partial n}-U\frac{\partial }{\partial n}(\frac{e^{ikR}}{R}))ds_2 4π1∬s2(ReikR∂n∂U−U∂n∂(ReikR))ds2其中,当R趋于 ∞ \infty ∞时,有 ∂ ∂ n ( e i k R R ) = ( i k − 1 R ) e i k R R = i k e i k R R \frac{\partial }{\partial n}(\frac{e^{ikR}}{R})=(ik-\frac{1}{R})\frac{e^{ikR}}{R}=ik\frac{e^{ikR}}{R} ∂n∂(ReikR)=(ik−R1)ReikR=ikReikR所以上式可以变为 1 4 π ∬ s 2 ( e i k R R ∂ U ∂ n − i k U e i k R R ) d s 2 = 1 4 π ∬ s 2 e i k R R ( ∂ U ∂ n − i k U ) d s 2 = 1 4 π ∫ Ω e i k R R ( ∂ U ∂ n − i k U ) R 2 d Ω \frac{1}{4\pi}\iint_{s_2}(\frac{e^{ikR}}{R}\frac{\partial U}{\partial n}-ikU\frac{e^{ikR}}{R})ds_2=\frac{1}{4\pi}\iint_{s_2}\frac{e^{ikR}}{R}(\frac{\partial U}{\partial n}-ikU)ds_2\\=\frac{1}{4\pi}\int_{\Omega}\frac{e^{ikR}}{R}(\frac{\partial U}{\partial n}-ikU)R^2d\Omega 4π1∬s2(ReikR∂n∂U−ikUReikR)ds2=4π1∬s2ReikR(∂n∂U−ikU)ds2=4π1∫ΩReikR(∂n∂U−ikU)R2dΩ其中, Ω \Omega Ω是曲面s对P点所张的立体角, d Ω d\Omega dΩ是元立体角。索末菲指出,在辐射场中有 lim R → ∞ ( ∂ U ∂ n − i k U ) R = 0 \lim\limits_{R\to\infty}(\frac{\partial U}{\partial n}-ikU)R=0 R→∞lim(∂n∂U−ikU)R=0其实不难发现,当R去无穷大时,显然有S上面的点对P点的作用十分的小,为0。所以有 U ( P ) = 1 4 π ∬ s 2 ( e i k r r ∂ U S 2 ∂ n − U S 2 ∂ ∂ n ( e i k r r ) ) d s 2 U(P)=\frac{1}{4\pi}\iint_{s_2}(\frac{e^{ikr}}{r}\frac{\partial U_{S2}}{\partial n}-U_{S2}\frac{\partial }{\partial n}(\frac{e^{ikr}}{r}))ds_2 U(P)=4π1∬s2(reikr∂n∂US2−US2∂n∂(reikr))ds2实际上有K远远大于 1 / r 0 1/r_0 1/r0和 1 / r 1/r 1/r,所以忽略这两项得 U ( P ) = A i λ ∬ s 2 e i k r r e i k r 0 r 0 [ c o s ( n , r ) − c o s ( n , r 0 ) 2 ] d s 2 U(P)=\frac{A}{i\lambda}\iint_{s_2}\frac{e^{ikr}}{r}\frac{e^{ikr_0}}{r_0}[\frac{cos(\boldsymbol{n},\boldsymbol{r})-cos(\boldsymbol{n},\boldsymbol{r_0})}{2}]ds_2 U(P)=iλA∬s2reikrr0eikr0[2cos(n,r)−cos(n,r0)]ds2该式被称为菲涅尔-基尔霍夫衍射公式。实际上它与惠更斯-菲涅尔公式基本一致。
瑞利-索末菲衍射理论
基尔霍夫衍射的边界条件是矛盾的;按位势理论,当通光孔径外的场和场的法线导数同时为0时,有通光孔径内的场也为0。原因是球面波形式的格林函数,对场和场导数同时施加限制。索末菲通过改变不同形式的格林函数得到不同的瑞利-索末菲衍射
第一类瑞利-索末菲衍射公式
我们取格林函数为
G
1
(
P
)
=
e
i
k
r
r
−
e
i
k
r
0
r
0
=
G
(
P
)
−
G
0
(
P
)
\boldsymbol{G_1(P)}=\frac{e^{ikr}}{r}-\frac{e^{ikr_0}}{r_0}=G(P)-G_0(P)
G1(P)=reikr−r0eikr0=G(P)−G0(P)其中P是P0相对于平面S1的镜像。
带入格林公式 ∬ S ( U ∂ G 1 ∂ n − G 1 ∂ U ∂ n ) d S = − ∬ s ′ ( U ∂ G 1 ∂ n − G 1 ∂ U ∂ n ) d s ′ \iint_{S}(U\frac{\partial G_1}{\partial n}-G_1\frac{\partial U}{\partial n})dS=-\iint_{s'}(U\frac{\partial G_1}{\partial n}-G_1\frac{\partial U}{\partial n})ds' ∬S(U∂n∂G1−G1∂n∂U)dS=−∬s′(U∂n∂G1−G1∂n∂U)ds′如分析基尔霍夫衍射定理一样,取封闭曲面S包围P,S由遮挡板曲面s1、小孔s和一个大的包围P点的部分球面。同时为了去除奇异点P,做包围P点的曲面s’。因为P为像点,所以作用的只有P0点。所以有 ∬ s ′ ( G 0 ∂ U ∂ n − U ∂ G 0 ∂ n ) d s ′ ≈ 0 \iint_{s'}(G_0\frac{\partial U}{\partial n}-U\frac{\partial G_0}{\partial n})ds'\approx0 ∬s′(G0∂n∂U−U∂n∂G0)ds′≈0 ∬ s ′ ( G 1 ∂ U ∂ n − U ∂ G 1 ∂ n ) d s ′ ≈ − 4 π U ( P ) \iint_{s'}(G_1\frac{\partial U}{\partial n}-U\frac{\partial G_1}{\partial n})ds'\approx -4\pi U(P) ∬s′(G1∂n∂U−U∂n∂G1)ds′≈−4πU(P)所以 U ( P ) = 1 4 π ∬ S ( G 1 ∂ U ∂ n − U ∂ G 1 ∂ n ) d S U(P)=\frac{1}{4\pi}\iint_S(G_1\frac{\partial U}{\partial n}-U\frac{\partial G_1}{\partial n})dS U(P)=4π1∬S(G1∂n∂U−U∂n∂G1)dS显然只有小孔S上的光强不为0所以有 U ( P ) = − 1 4 π ∬ s ( U ∂ G 1 ∂ n ) d s U(P)=\frac{-1}{4\pi}\iint_s(U\frac{\partial G1}{\partial n})ds U(P)=4π−1∬s(U∂n∂G1)ds
第二类瑞利-索末菲衍射公式
与求第一类类似,将格林函数去为 G 2 ( P ) = e i k r r + e i k r 0 r 0 = G ( P ) + G 0 ( P ) \boldsymbol{G_2(P)}=\frac{e^{ikr}}{r}+\frac{e^{ikr_0}}{r_0}=G(P)+G_0(P) G2(P)=reikr+r0eikr0=G(P)+G0(P)得到第二类瑞利-索末菲衍射公式 U ( P ) = 1 4 π ∬ s ( G 2 ∂ U ∂ n ) d s U(P)=\frac{1}{4\pi}\iint_s(G_2\frac{\partial U}{\partial n})ds U(P)=4π1∬s(G2∂n∂U)ds
基尔霍夫衍射公式的近似
从上面我们可以看出基尔霍夫衍射有着非常复杂的被积函数,对于实际问题求解不方便。所以根据具体问题对基尔霍夫衍射公式进行近似
傍轴近似
在一般光学系统中,成像光线主要是那些与光轴夹角很小的光线。所以我们得到 c o s ( n , r ) = c o s θ = 1 , c o s ( n , r 0 ) = − 1 cos(\boldsymbol{n},\boldsymbol{r})=cos\theta=1,cos(\boldsymbol{n},\boldsymbol{r_0})=-1 cos(n,r)=cosθ=1,cos(n,r0)=−1( θ 很 小 \theta很小 θ很小),同时也可以认为r=z,z是观测屏到衍射屏之间的距离。但是在指数中r不能用z来代替,r每改变半个波长,相位kr就要变换 π \pi π。根据上诉进行近似,有基尔霍夫公式变为: U ( P ) = A i λ ∬ s e i k r z e i k r 0 r 0 d s = 1 i λ ∬ s U ( Q ) e i k r z d s U(P)=\frac{A}{i\lambda}\iint_{s}\frac{e^{ikr}}{z}\frac{e^{ikr_0}}{r_0}ds=\frac{1}{i\lambda}\iint_{s}U(Q)\frac{e^{ikr}}{z}ds U(P)=iλA∬szeikrr0eikr0ds=iλ1∬sU(Q)zeikrds
菲涅尔近似
在孔径平面和观察平面分别取直角坐标系为 ( x , y ) 、 ( x 1 , y 1 ) (x,y)、(x_1,y_1) (x,y)、(x1,y1), 可以将 r r r表示为 r = z 1 2 + ( x 1 − x ) 2 + ( y 1 − y ) 2 = z 1 ( 1 + ( x 1 − x z 1 ) 2 + ( y 1 − y z 1 ) 2 ) 1 / 2 r=\sqrt{z_1^2+(x_1-x)^2+(y_1-y)^2}=z_1(1+(\frac{x_1-x}{z_1})^2+(\frac{y_1-y}{z_1})^2)^{1/2} r=z12+(x1−x)2+(y1−y)2=z1(1+(z1x1−x)2+(z1y1−y)2)1/2 ( x , y ) 、 ( x 1 , y 1 ) (x,y)、(x_1,y_1) (x,y)、(x1,y1)分别为孔径平面上的任意一点Q和观测平面上的任意一点P, z 1 z_1 z1为孔径平面到观测平面的距离。将上式进行二项式展开得到 r = z 1 { 1 + ( x 1 − x ) 2 + ( y 1 − y ) 2 2 z 1 2 − 1 8 [ ( x 1 − x ) 2 + ( y 1 − y ) 2 z 1 2 ] 2 + . . . } r=z_1\{1+\frac{(x_1-x)^2+(y_1-y)^2}{2z_1^2}-\frac{1}{8}[\frac{(x_1-x)^2+(y_1-y)^2}{z_1^2}]^2+...\} r=z1{1+2z12(x1−x)2+(y1−y)2−81[z12(x1−x)2+(y1−y)2]2+...}可以用这一级数来进近似的表示r,当 z 1 z_1 z1足够大时,所用的项就越少。当 z 1 z_1 z1大到使得第三项以后各项对位相 k r kr kr的作用远远小于 π \pi π时即 k 8 [ ( x 1 − x ) 2 + ( y 1 − y ) 2 ] 2 z 1 3 ≪ π \frac{k}{8}\frac{[(x_1-x)^2+(y_1-y)^2]^2}{z_1^3}\ll\pi 8kz13[(x1−x)2+(y1−y)2]2≪π或者 z 1 3 ≫ 1 4 λ [ ( x 1 − x ) 2 + ( y 1 − y ) 2 ] 2 z_1^3\gg \frac{1}{4\lambda}[(x_1-x)^2+(y_1-y)^2]^2 z13≫4λ1[(x1−x)2+(y1−y)2]2可以忽略第三项以后的项,那么可以用前两项来表示r,即 r = z 1 ( 1 + ( x 1 − x ) 2 + ( y 1 − y ) 2 2 z 1 2 ) r=z_1(1+\frac{(x_1-x)^2+(y_1-y)^2}{2z_1^2}) r=z1(1+2z12(x1−x)2+(y1−y)2)这一近似叫做菲涅尔近似,观察屏放在这个区域所观察到的衍射现象叫做菲涅尔衍射,此时P点光场的相量 U ( x 1 , y 1 ) U(x_1,y_1) U(x1,y1) U ( x 1 , y 1 ) = 1 i λ ∬ s U ( x , y ) e i k r z 1 d x d y = 1 i λ ∬ s U ( x , y ) e i k z 1 ( 1 + ( x 1 − x ) 2 + ( y 1 − y ) 2 2 z 1 2 ) z 1 d x d y = e i k z 1 i λ z 1 ∬ s U ( x , y ) e i k 2 z 1 [ ( x 1 − x ) 2 + ( y 1 − y ) 2 ] d x d y U(x_1,y_1)=\frac{1}{i\lambda}\iint_{s}U(x,y)\frac{e^{ikr}}{z_1}dxdy\\=\frac{1}{i\lambda}\iint_{s}U(x,y)\frac{e^{ikz_1(1+\frac{(x_1-x)^2+(y_1-y)^2}{2z_1^2})}}{z_1}dxdy\\=\frac{e^{ikz_1}}{i\lambda z_1}\iint_{s}U(x,y)e^{\frac{ik}{2z_1}[(x_1-x)^2+(y_1-y)^2]}dxdy U(x1,y1)=iλ1∬sU(x,y)z1eikrdxdy=iλ1∬sU(x,y)z1eikz1(1+2z12(x1−x)2+(y1−y)2)dxdy=iλz1eikz1∬sU(x,y)e2z1ik[(x1−x)2+(y1−y)2]dxdy,因为只有小孔处U(x,y)不等于0,所以上式可以写为对整个小孔平面的积分。 U ( x 1 , y 1 ) = e i k z 1 i λ z 1 ∬ − ∞ ∞ U ( x , y ) e i k 2 z 1 [ ( x 1 − x ) 2 + ( y 1 − y ) 2 ] d x d y U(x_1,y_1)=\frac{e^{ikz_1}}{i\lambda z_1}\iint_{-\infty}^{\infty}U(x,y)e^{\frac{ik}{2z_1}[(x_1-x)^2+(y_1-y)^2]}dxdy U(x1,y1)=iλz1eikz1∬−∞∞U(x,y)e2z1ik[(x1−x)2+(y1−y)2]dxdy该式可以看做是一个卷积 U ( x 1 , y 1 ) = ∬ − ∞ ∞ U ( x , y ) h ( x 1 − x , y 1 − x ) d x d y U(x_1,y_1)=\iint_{-\infty}^{\infty}U(x,y)h(x_1-x,y_1-x)dxdy U(x1,y1)=∬−∞∞U(x,y)h(x1−x,y1−x)dxdy其脉冲响应函数 h ( x , y ) = e i k z 1 i λ z 1 e i k 2 z 1 [ x 2 + y 2 ] h(x,y)=\frac{e^{ikz_1}}{i\lambda z_1}e^{\frac{ik}{2z_1}[x^2+y^2]} h(x,y)=iλz1eikz1e2z1ik[x2+y2]将上式的二次方项展开 U ( x 1 , y 1 ) = e i k z 1 i λ z 1 e i k 2 z 1 [ x 1 2 + y 1 2 ] ∬ − ∞ ∞ U ( x , y ) e i k 2 z 1 [ x 2 + y 2 ] e − i 2 π ( x 1 λ z 1 x + y 1 λ z 1 y ) d x d y = e i k z 1 i λ z 1 e i k 2 z 1 [ x 1 2 + y 1 2 ] ∬ − ∞ ∞ U ′ ( x , y ) e − i 2 π λ z 1 ( x 1 x + y 1 y ) d x d y U(x_1,y_1)=\frac{e^{ikz_1}}{i\lambda z_1}e^{\frac{ik}{2z_1}[x_1^2+y_1^2]}\iint_{-\infty}^{\infty}U(x,y)e^{\frac{ik}{2z_1}[x^2+y^2]} e^{-i2\pi (\frac{x_1}{\lambda z_1}x+\frac{y_1}{\lambda z_1}y)}dxdy\\=\frac{e^{ikz_1}}{i\lambda z_1}e^{\frac{ik}{2z_1}[x_1^2+y_1^2]}\iint_{-\infty}^{\infty}U'(x,y)e^{\frac{-i2\pi}{\lambda z_1} (x_1x+y_1y)}dxdy U(x1,y1)=iλz1eikz1e2z1ik[x12+y12]∬−∞∞U(x,y)e2z1ik[x2+y2]e−i2π(λz1x1x+λz1y1y)dxdy=iλz1eikz1e2z1ik[x12+y12]∬−∞∞U′(x,y)eλz1−i2π(x1x+y1y)dxdy上式可以看出 U ( x 1 , y 1 ) U(x_1,y_1) U(x1,y1)恰好是 U ′ ( x , y ) U'(x,y) U′(x,y)的二维傅里叶变换,其对应的空间频率为 f x = x 1 λ z 1 , f y = y 1 λ z 1 f_x=\frac{x_1}{\lambda z_1},f_y=\frac{y_1}{\lambda z_1} fx=λz1x1,fy=λz1y1。我们令 C = e i k z 1 i λ z 1 e i k 2 z 1 [ x 1 2 + y 1 2 ] C=\frac{e^{ikz_1}}{i\lambda z_1}e^{\frac{ik}{2z_1}[x_1^2+y_1^2]} C=iλz1eikz1e2z1ik[x12+y12]所以上式可以写作 U ( f x , f y ) = C ∬ − ∞ ∞ U ′ ( x , y ) e − i 2 π ( f x x + f y y ) d x d y = C F [ U ′ ( x , y ) ] U(f_x,f_y)=C\iint_{-\infty}^{\infty}U'(x,y)e^{-i2\pi(f_xx+f_yy)}dxdy=C\mathscr{F}[U'(x,y)] U(fx,fy)=C∬−∞∞U′(x,y)e−i2π(fxx+fyy)dxdy=CF[U′(x,y)] F \mathscr{F} F表示傅里叶变换,该式是菲涅尔衍射的傅里叶变换表达式,菲涅尔衍射的复振幅分布是孔径平面复振幅分布和一个二次相位因子乘积的傅里叶变换。
夫琅禾费近似
在菲涅尔衍射中,取的 r = z 1 ( 1 + ( x 1 − x ) 2 + ( y 1 − y ) 2 2 z 1 2 ) = z 1 + x 1 2 + y 1 2 2 z 1 − x x 1 + y y 1 z 1 + x 2 + y 2 2 z 1 r=z_1(1+\frac{(x_1-x)^2+(y_1-y)^2}{2z_1^2})=z_1+\frac{x_1^2+y_1^2}{2z_1}-\frac{xx_1+yy_1}{z_1}+\frac{x^2+y^2}{2z_1} r=z1(1+2z12(x1−x)2+(y1−y)2)=z1+2z1x12+y12−z1xx1+yy1+2z1x2+y2当 k ( x 2 + y 2 ) m a x 2 z 1 ≪ π k\frac{(x^2+y^2)_{max}}{2z_1}\ll\pi k2z1(x2+y2)max≪π或者 ( x 2 + y 2 ) m a x λ ≪ z 1 \frac{(x^2+y^2)_{max}}{\lambda}\ll z_1 λ(x2+y2)max≪z1时我们可以把上式中的第四项省去,即 r ≈ z 1 + x 1 2 + y 1 2 2 z 1 − x x 1 + y y 1 z 1 r\approx z_1+\frac{x_1^2+y_1^2}{2z_1}-\frac{xx_1+yy_1}{z_1} r≈z1+2z1x12+y12−z1xx1+yy1这一近似叫做夫琅禾费近似,此时在P点的相量为 U ( x 1 , y 1 ) = e i k z 1 i λ z 1 e i k 2 z 1 [ x 1 2 + y 1 2 ] ∬ − ∞ ∞ U ( x , y ) e − i 2 π ( x 1 λ z 1 x + y 1 λ z 1 y ) d x d y U(x_1,y_1)=\frac{e^{ikz_1}}{i\lambda z_1}e^{\frac{ik}{2z_1}[x_1^2+y_1^2]}\iint_{-\infty}^{\infty}U(x,y)e^{-i2\pi (\frac{x_1}{\lambda z_1}x+\frac{y_1}{\lambda z_1}y)}dxdy U(x1,y1)=iλz1eikz1e2z1ik[x12+y12]∬−∞∞U(x,y)e−i2π(λz1x1x+λz1y1y)dxdy如菲涅尔衍射一样,将上式改写为 U ( f x , f y ) = C ∬ − ∞ ∞ U ( x , y ) e − i 2 π ( f x x + f y y ) d x d y = C F [ U ( x , y ) ] \\U(f_x,f_y)=C\iint_{-\infty}^{\infty}U(x,y)e^{-i2\pi(f_xx+f_yy)}dxdy=C\mathscr{F}[U(x,y)] U(fx,fy)=C∬−∞∞U(x,y)e−i2π(fxx+fyy)dxdy=CF[U(x,y)]这就是夫琅禾费衍射的傅里叶变换表达式。