批量梯度下降法

一、发展历史

梯度下降法是一种优化算法,早在20世纪50年代就被提出。最初,梯度下降法是被用于解决线性回归问题的,即在给定数据集的情况下,找到一条最佳的直线来拟合数据。随着时间的推移,梯度下降法被广泛应用于各种机器学习问题中,如分类、聚类、降维等。

批量梯度下降法(Batch Gradient Descent)是梯度下降法的一种形式,它是最早被提出的梯度下降算法之一。批量梯度下降法的基本思想是,通过计算所有样本的梯度来更新模型参数,以达到最小化损失函数的目的。批量梯度下降法的发展历史可以追溯到20世纪50年代。

随着计算机技术的进步,批量梯度下降法的计算速度得到了大幅提升,但在处理大规模数据时,其计算量仍然很大,导致训练时间过长。因此,人们开始研究更加高效的梯度下降算法,如随机梯度下降法(Stochastic Gradient Descent,SGD)和小批量梯度下降法(Mini-batch Gradient Descent)等。

二、基本原理

  1. 梯度下降法

梯度下降法是一种迭代算法,其基本思想是在每一次迭代中,通过计算当前点的梯度,并朝着梯度的反方向更新参数,以达到最小化损失函数的目的。这个过程可以描述成以下公式:

θ=θαJ(θ)

其中,θ 表示模型参数,α 表示学习率,∇J(θ) 表示损失函数 J(θ) 对参数 θ 的梯度。

  1. 批量梯度下降法

批量梯度下降法是梯度下降法的一种形式,其基本原理是在每一次迭代中,计算所有样本的梯度,并朝着梯度的反方向更新参数。这个过程可以描述成以下公式:

θ=θαm1i=1∑mJi(θ)

其中,m 表示样本数,∇Ji(θ) 表示损失函数 J(θ) 对第 i 个样本的参数 θ 的梯度。

批量梯度下降法的优点是收敛速度较快,但其缺点是在处理大规模数据时,计算量较大,导致训练时间过长。

三、数学思想

批量梯度下降法的数学思想是利用梯度的信息来更新模型参数,以达到最小化损失函数的目的。具体来说,每一次迭代中,计算所有样本的梯度,然后朝着梯度的反方向更新参数,使得损失函数的值不断减小,直到收敛为止。

四、数学原理

批量梯度下降法的数学原理可以从以下几个方面来解释。

  1. 梯度的方向是函数值下降最快的方向

在多元函数中,梯度是一个向量,表示函数在当前点的变化率。根据微积分的知识,梯度的方向是函数值下降最快的方向。因此,在优化问题中,我们可以利用梯度的信息来更新模型参数,以达到最小化损失函数的目的。

  1. 学习率的选择对算法的收敛速度和稳定性有影响

学习率是批量梯度下降法中一个重要的参数,它控制着每一次迭代中参数的更新幅度。如果学习率过大,会导致参数在更新过程中来回震荡,甚至无法收敛;如果学习率过小,会导致收敛速度过慢,需要更多的迭代次数才能达到最小值。因此,学习率的选择对算法的收敛速度和稳定性有很大的影响。

  1. 损失函数的选择对算法的效果有很大的影响

损失函数是批量梯度下降法中的一个重要概念,它用来衡量模型预测值和真实值之间的差距。不同的问题需要选择不同的损失函数,以达到最小化损失函数的目的。例如,在回归问题中常用的损失函数是均方误差(Mean Squared Error,MSE),在分类问题中常用的损失函数是交叉熵(Cross Entropy)。

五、研究代表作

批量梯度下降法是机器学习领域中最早被提出的优化算法之一,其应用广泛,有很多相关的研究代表作。以下是一些具有代表性的文献:

  1. Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological review, 1958, 65(6): 386.

  1. Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533-536.

  1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.

  1. Bottou L. Online learning and stochastic approximations. Online Learning and Neural Networks, 1998, 17(9): 1429-1445.

  1. Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

  1. Zeiler M D. ADADELTA: An adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

  1. Tieleman T, Hinton G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

  1. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 2011, 12(Jul): 2121-2159.

  1. Shalev-Shwartz S, Tewari A. Stochastic methods for l1-regularized loss minimization. Journal of Machine Learning Research, 2011, 12(Mar): 1865-1892.

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值