注:本文仅用于个人学习笔记,内容均来自其他博客和PPT。
1.标准差,方差,协方差,相关系数
(1)方差:方差是各个数据与平均数之差的平方的平均数,它体现了随机变量和其数学期望(即均值)之间的偏离程度。
公式:
(2) 标准差
公式:
从公式可以看出,标准差计算方法为,每一时刻变量值与变量均值之差再平方,求得一个数值,再将每一时刻这个数值相加 后求平均,再开方。
(3)协方差
公式:
公式简单翻译一下是:如果有X,Y两个变量,每个时刻的“X值与其均值之差”乘以“Y值与其均值之差”得到一个乘积,再对这每时刻 的乘积求和并求出均值(其实是求“期望”,但就不引申太多新概念了,简单认为就是求均值了。
(4)相关系数
翻译一下:就是用X、Y的协方差除以X的标准差和Y的标准差。
所以,相关系数也可以看成协方差:一种剔除了两个变量量纲影响、标准化后的特殊协方差。
2.自协方差,自相关系数,偏自相关系数
(1)自协方差
现实存在的意义:如果Yt的期望为0,那么rk = E(YtYt+k) 被称为自协方差函数
备注:继续借用上面的符号,但是在上面加上一个尖头或者念hat(帽子),表示自协方差,与原来的协方差表示意思 一样,但是统计数据不一样而已。其中求E的期望符号,用分数表示,原理也是一样。这里的Z的期望只有一个Zt的期 望也是Z,Zt+k的期望也是Z,所以后面的滞后减去的期望也是总体期望
(2)自相关系数(ACF)
自相关系数度量的是同一事件在两个不同时期之间的相关程度,形象的讲就是度量自己过去的行为对自己现在的影响。
现实存在的意义:ρk =γk/γ0称为自相关γ0等于1.
备注:继续借用上面的符号,也是加一个hat。但是这里注意到没有,这里的分母和上面表示相关函数的分母不一样。下面除 以是两个标准差乘积,还少一个个数n,这是因为根据“自”的性质,对于较大的n,ρk的分布近似正态分布,均值为ρk,方差 ρk 为0,Sρk=1/n开根号。1/n*n等于1,所以n就没有了。另外,zt+k和zt近似正态分布,也就是说这个均值会收敛到0,因此 计算一个即可。
偏自相关系数 (PACF)
度量去除中间变量影响后的相关程度。( - ) 通过产生关联,PACF即去除的关联后的两者的相关系数。
现实存在的意义:除了Zt和Zt+k之间的自相关外,我们考场除去了Zt和Zt+k共同线性依赖的敢于变量Zt+1,Zt+2,Zt+3...的影响 后的相关,表达式为PCorr(Zt,Zt+k | Zt+1,...,Zt+k-1)。也就是说观察在Zt+1的条件下,Zt和Zt+k的自相关状态是怎么 样,以此类推。
小结一下:
时间序列借用统计学的数据结构分析公式,期望还是等于期望。自协方差 = 协方差(期望用一个)。自相关系数 = 相关系数(期望用一个)。偏自相关 = 相关系数(期望各自序列用各自的)。
内容来自于以下博客,内容更为详细:https://www.cnblogs.com/noah0532/p/8449638.html
协方差和相关系数的详细讲解可以看这位大神非常简单易懂http://blog.sina.com.cn/s/blog_6aa3b1010102xkp5.html