caffe源码解析 — net.cpp

本文详细解析了Caffe库中net.cpp的主要功能,包括初始化网络、前馈、反向传播等过程。讲解了Init函数如何从NetParameter或文件加载网络配置,以及如何处理输入层和各层的blob。同时介绍了GetLearningRateAndWeightDecay函数用于收集学习速率和权重衰减。
摘要由CSDN通过智能技术生成
Net类是Solve类的一个成员,在net.cpp中定义了对Net的所有操作,其中包括:
  • Init
  • GetLearningRateAndWeightDecay
  • ForwardPrefilled
  • Backward
  • ShareTrainedLayersWith
  • CopyTrainedLayersFrom
  • ToProto
  • Update
  • has_blob
  • blob_by_name
  • has_layer
  • layer_by_name

Net(const NetParameter& param)
功能:调用Init函数初始化网络
输入:NetParameter& param
输出:无

Net(const string& param_file)
功能:调用Init函数初始化网络
输入:string& param_file
输出:无

Init(const NetParameter& in_param)
功能:初始化网络
输入:NetParameter& in_param
输出:无
步骤:
<1> 调用InsertSplits()函数从in_param读入新网络到param
<2> 定义name_,blob_name_to_idx,available_blobs,num_layers
<3> param.input_size()返回输入层blob的个数;
param.input(i)表示第i个blob的名字;
param.layers_size()返回网络的层数。
<4> 对每一个输入层的blob:

  1. 产生一块和当前blob一样大的空间 e.g. imput_dim=[12 55 66 39 20 24 48 64]表示第一个blob的四个维数为 12 55 66 39,第二个为 20 24 48 64 接着blob_pointer指向这块空间
  2. blob_pointer压到blobs_中 vector<shared_ptr<Blob<Dtype>>> blobs_
  3. blob_name压到blob_names_中 vector<string> blob_names_
  4. param.force_backward()压到blob_need_backward_中
    vector<bool> blob_need_backward_
  5. i 压到 net_input_blob_indices_中 net_input_blob_indices_ -> vector
  6. blob_pointer.get() 压
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值