哪些事情可以做呢?
营销
AI做营销创意,人再加工
Al批量生产营销素材
多语言翻译
客服/销售
全 AI,适合本来没人做,AI来补位
半 AI,适合本来有人做,AI来提效
办公
公文撰写/总结/翻译
知识库
内部客服
辅助决策
情报分析
BI
产品研发
创意、头脑风暴
IT 研发提效
错误的认知有哪些?
AGl(Artificial GeneralIntelligence)多久会到来,明天,还是永远都不会来?
乐观预测:明年
主流预测:3-5年(OpenAl、DeepMind、NVIDIA 持此观点)
悲观预测:10 年
我只要懂ai技术就行了
AI产品开发者的核心能力三懂:
- 懂业务,就是懂用户、懂客户、懂需求、懂市场、运营、懂商业模式,懂怎么赚钱
- 懂 AI,就是懂 AI能做什么,不能做什么,怎样才能做得更好,更快,更便宜,懂怎么用AI解决赚钱过程中的问题
- 懂编程,就是懂如何编写代码实现一个符合业务需求的产品,尤其是 AI产品
我们要争取三懂,最低也要两懂。
未来AI工程师方向:
- AI全栈工程师:懂业务、懂 AI、懂编程
- 业务向:懂业务、懂 AI
- 编程向:懂编程、懂 AI
守着自己的一亩三分地,ai对我还比较遥远。
AGI时代,AI无处不在,形成新的社会分层:
- AI使用者,使用别人开发的 Al 产品
- AI产品开发者,设计和开发 AI产品
- 基础模型相关,训练基础大模型,或为大模型提供基础设施
越向下层,重要性越高,从业人数越少。
- 使用者人人都是,不稀缺
- 基础模型相关门槛特别高,机会特别难遇到。比如:全球做基础大模型训练的,只需要1000 人
所以大部分人都是第二层的人,如果能进入第三层,要毫不犹豫的进去。
AI学习中,只有实战才是干货
- 原理:不懂原理就不会举一反三,走不了太远。
- 实践:不懂实践就只能纸上谈兵,做事不落地。
- 认知:认知不高就无法做对决策,天花板太低。
目前,行业共识是:
- 确定未来-AI必然重构世界
- 确定进入-想收获红利,必须马上进
- 落地的关键在业务-业务和技术的最佳匹配,才能落地。代码量不大
等落地模式确定了,代码的价值才大
AI学习矩阵:
常用网站:
想要落地AI项目需要的五大要素:
- 业务人员的积极
- 对 AI能力的认知
- 业务团队自带编程能力
- 小处着手
- 老板的耐心
找落地场景的思路:
- 从最熟悉的领域入手
- 别求大而全。将任务拆解,先解决小任务、小场景
- 让 AI 学最厉害员工的能力,再让 ta 辅助其他员工,实现降本增效
思考:如果人人都会,那我们的优势是什么?
我们在「提示工程」上的优势
我们懂原理,会把 Al 当人看,所以知道:
- 为什么有的指令有效,有的指令无效
- 为什么同样的指令有时有效,有时无效
- 怎么提升指令有效的概率
如果我们懂编程:
- 知道哪些问题用提示工程解决更高效,哪些用传统编程更高效
- 能完成和业务系统的对接,把效能发挥到极致
提示工程经验总结
- 别急着上代码,先尝试用 prompt 解决,往往有四两拨千斤的效果
- 但别迷信 prompt,合理组合传统方法提升确定性,减少幻觉
- 定义角色、给例子是最常用的技巧
- 必要时上思维链,结果更准确
- 防御 prompt 攻击非常重要,但很难,(prompt可以通过注入不同的角色,诱导ai说出一些不该有的内容)
如何防御prompt攻击:
- 优化prompt,让ai自己判断用户的内容是否和原始内容矛盾的;
- 在用户输入的内容前加入防御,强调ai的角色或职能范围,不允许做以外的事情;
- 使用检测有害prompt的模型/服务(Meta Prompt Guard、Arthur Shield、Preamble、Lakera Guard)