设N = abcde ,其中abcde分别为十进制中各位上的数字。
如果要计算百位上1出现的次数,它要受到3方面的影响:百位上的数字,百位以下(低位)的数字,百位以上(高位)的数字。
①如果百位上数字为0,百位上可能出现1的次数仅由更高位决定。比如:12013,则可以知道百位出现1的情况可能是:100~199,1100~1199,2100~2199,,…,11100~11199,一共1200个。可以看出是由更高位数字(12)决定,并且等于更高位数字(12)乘以 当前位数(100)。
②如果百位上数字为1,百位上可能出现1的次数不仅受更高位影响还受低位影响。比如:12113,则可以知道百位受高位影响出现的情况是:100~199,1100~1199,2100~2199,,….,11100~11199,一共1200个。和上面情况一样,并且等于更高位数字(12)乘以 当前位数(100)。但同时它还受低位影响,百位出现1的情况是:12100~12113,一共14个,等于低位数字13+1。
③如果百位上数字大于1(2~9),则百位上出现1的情况仅由更高位决定,比如12213,则百位出现1的情况是:100~199,1100~1199,2100~2199,…,11100~11199,12100~12199,一共有1300个,并且等于更高位数字+1(12+1)乘以当前位数(100)。
以下是代码C++实现:
int NumberOf1Between1AndN_Solution(int n)
{
int i = 1, cur = 0, high = n, low = 0, count = 0;
while ((n / pow(10, i)) != 0)
{
cur = high % 10;
high = high / 10;
low = n - high*pow(10, i) - cur*pow(10, i - 1);
if (cur == 0)//完全由高位决定
{
count += high*pow(10, i - 1);
}
if (cur == 1)//高位和低位决定
{
count += high*pow(10, i - 1) + low + 1;
}
if (cur > 1)
{
count += (high + 1)*pow(10, i - 1);
}
i++;
}
return count;
}
普通低效率的做法如下,C语言实现:
int NumberOf1Between1AndN_Solution(int n)
{
if (n <= 0)
return 0;
int j = 0, count = 0;
for (int i = 1; i <= n; i++)
{
j = i;
while (j / 10 != 0)
{
if (j % 10 == 1)
count++;
j = j / 10;
}
if (j % 10 == 1)
count++;
}
return count;
}