论文中期答辩,PPT,汇报

基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PPT(毕业设计)基于深度学习的垃圾分类目标检测系统源码+说明文档+答辩PP
【项目介绍】 基于深度学习的热轧带钢表面缺陷自动检测设计与实现python源码+答辩PPT+模型(毕设项目).zip 该资源内项目代码都是经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶, 或者实际项目借鉴参考! 当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。如果基础还行,也可在此代码基础上进行修改,以实现其他功能。 基于深度学习的热轧带钢表面缺陷自动检测技术 1 基于Pytorch框架初步搭建了一套用于缺陷检测的CNN网络(Convolutional Neural Networks),借助带标签数据,使用交叉验证的数据集分配方法,对网络进行训练和检测,实验表明,在训练轮次为100轮的条件下,我们的网络识别正确率可达68%; 2 为了充分利用现有数据集,提高模型的泛化性能,我们给现有数据集加上高斯噪声,对数据集进行旋转平移等操作; 3 为了减弱网络模型的过拟合现象,我们采用神经元随机失活(Dropout)方法,通过随机让部分神经元临时不参与计算的方式,减少神经元之间的依赖,迫使网络学习更加普适化的特征; 4 为了减少参数数量,提升运算速度,我们改变最初的网络,采用一种轻量化的网络(EffNet),这种网络相比于传统轻量化网络(SqueezeNet、MobileNet等),在参数量基本相同的情况下,识别精度更高; 5 为了增加自动检测系统的交互性能,我们借助pyqt5设计了具有统计缺陷数量和显示识别结果功能的GUI界面,并将相关代码移植到Linux操作系统下,通过树莓派运行,经检测识别正确率可达94%;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值