异常检测之普通高斯算法和多元高斯算法学习总结

本文总结了普通高斯算法和多元高斯算法在异常检测中的应用。普通高斯算法不考虑特征间的关联性,通过计算高斯公式确定阈值进行异常检测。多元高斯算法则考虑特征间的关系,能自动捕捉相关性,但计算成本较高,需要m>n以避免协方差矩阵不可逆。当矩阵不可逆时,可通过增加样本数量或去除冗余特征解决。
摘要由CSDN通过智能技术生成

普通高斯算法:

特点:如果不主动去建立特征与特征之间的关系特征,则普通的高斯算法没有特征的关联性

实现方式简述:

1.取1000组非异常的对象,并归纳其n中特种

2.分别计算每种特种高斯公式函数里的

3.将第二部中计算出的带入下边的计算公式得出p(x)的表达式

4.另外取200组混有异常对象的数据带入p(x)表达式,确定阈值

当p(x)<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值