LeetCode- 93. 复原IP地址

241 篇文章 1 订阅
210 篇文章 0 订阅

给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。

示例:

输入: "25525511135"
输出: ["255.255.11.135", "255.255.111.35"]

 

 

DFS,思路:考虑满足ip地址的要求,必须放置三个点  " . ",将字符串分割成4段。

于是我们可以遍历每个字符间隔放置 " . " 的前一个字串是否满足要求,如果满足,则

继续放置 ".",存储合法字串,一直到最后用完3个".",之后判断尾部的字符串就可以了,

如果不满足,抛弃当前上一个字串,重新遍历 "."的位置。

 

这里我说明一下,为什么当前不满足,要抛弃上一个已经合法的字串,大家可以看我写的JudgeIsIp 函数,其实出现违法的情况就只有下面几种:

1.字符串长度大于3。(虽然判了小于0的情况,但是根据递归顺序,字符串字串不可能小于0)

2.字符串数字大于255。

3.字符串大于1且首字母为0。

如果满足这三个条件是一定无法构成ip地址的,并且随着递归顺序增加,"."的位置只会到更后边,本次循环的下一个字串必定非法,所以没毕业继续进行本次循环,return,满足上一个合法字符穿字串的操作已经进入递归,所以上一个合法字符字串必须舍弃,重新排列。

 

#include <iostream>
#include <vector>
#include <string>
using namespace std;
class Solution {

public:
	vector<string> restoreIpAddresses(string s) {
		vector<string> son;
		backtrace(s, 0, 0, son);
		return m_res;
	}

	/*
	 *    s : 原始字符
	 * start: 起始位
	 * count: 分割的次数
	 *  son : 字符串子串
	 *
	*/
	void backtrace(string s, int start, int count, vector<string>& son) {

		if (count < 3) {
			for (int i = start + 1; i < s.length(); i++) {
				string temp = s.substr(start, i - start);

				/* 不满足条件,pop */
				if (!JudgeIsIp(temp)) {
					if (!son.empty())
						son.pop_back();
					return;
				}
				vector<string> tmp(son);
				tmp.push_back(temp);
				backtrace(s, i, count + 1, tmp);
			}

		}

		/* 判断最后一位 */
		else if (count == 3) {
			string temp = s.substr(start, s.length() - start);

			/* 不满足条件,pop */
			if (!JudgeIsIp(temp)) {
				if (!son.empty())
					son.pop_back();
				return;
			}
			son.push_back(temp);

			string res;
			for (int i = 0; i < son.size(); i++) {
				res += son[i] + ".";
			}
			string last = res.substr(0, res.length() - 1);

			m_res.push_back(last);
		}
	}
private:
	vector<string> m_res;

	/* 判断是否是ip地址 */
	bool JudgeIsIp(string& ip) {
		if (ip.length() <= 0 || ip.length() > 3) {
			return false;
		}
		if (atoi(ip.c_str()) > 255) {
			return false;
		}

		if (ip.length() > 1 && ip[0] == '0') {
			return false;
		}
		return true;
	}
};

int main() {
	string str = "25525511135";
	Solution* ps = new Solution();
	vector<string> x = ps->restoreIpAddresses(str);

	vector<string>::iterator it = x.begin();
	while (it != x.end()) {
		cout << *it << endl;
		it++;
	}

	return 0;
}

 

### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值