无需编码即可使用 ArcGIS Pro 中的深度学习进行基于像素的分类

本文提供了在 ArcGIS Pro 中使用深度学习执行基于像素的分类的简明指南,而不是编写代码来构建深度学习模型。

我们将介绍从数据准备和模型训练到分类和可视化的基本步骤。无论您是 GIS 专业人员还是遥感专家,本教程都将帮助您利用深度学习完成地理空间项目。

我的训练图像来自 2022 年 4 月,覆盖台湾整个石门水库集水区。它使用具有 4 个波段(R、G、B、NIR)的 Spot-6 影像。我添加了一个 5m DEM 来计算坡度作为附加波段,使其总共有 5 个波段。图像经过预处理,单元大小为 1.5m,深度为 8 位。

由于测试影像为2024年3月拍摄,覆盖石门水库集水区部分区域,波段排列相同,已进行预处理,确保所有栅格信息与训练样本相符。

步骤 1.下载深度学习包

第一步,我们需要下载DL包。下载链接

选择与您的ArcGIS Pro版本匹配的版本,
然后双击.msi文件解压并安装。

步骤2.数据准备和预处理

ArcGIS Pro深度学习是指利用ArcGIS Pro软件平台结合深度学习技术进行空间数据分析和处理的方法。利用深度学习技术,ArcGIS Pro可以更精确地识别和分类地理空间数据中的目标,例如土地利用、植被覆盖、建筑物等,有效提高地理信息系统的数据处理和分析能力。 ArcGIS Pro深度学习的核心是深度学习模型的应用。通过训练深度学习模型,可以自动从大量的地理空间数据中提取特征,并进行精确的分类和识别。例如,利用卷积神经网络模型可以对遥感影像进行地物分类,识别道路、湖泊、森林等地物类型。同时,ArcGIS Pro还可以利用深度学习技术进行目标检测,例如识别建筑物、车辆、船只等目标,为城市规划、环境监测等提供更准确的数据支持。 除了图像识别和目标检测,ArcGIS Pro深度学习还可以应用于地理空间数据的预测和分析。比如利用循环神经网络模型对气候数据进行预测,对地质数据进行矿区勘探等。深度学习技术的应用使ArcGIS Pro在空间数据处理和分析方面具有更高的精度和效率,为地理信息系统的应用提供了更多可能性与发展空间。 总之,ArcGIS Pro深度学习是一种创新的地理信息处理方法,通过结合深度学习技术,可以更加高效、准确地处理和分析各类地理空间数据,为各个领域的应用提供更为精确和可靠的数据支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gis收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值