Keras验证集切分

本文深入解析了机器学习中model.fit函数的validation_split参数作用。它用于从训练集中划分出一部分作为验证集,此集不在训练过程中使用,而是在每个epoch结束后评估模型性能,确保模型泛化能力。特别提醒,划分前应先对数据进行shuffle,避免因数据顺序导致验证集样本不均衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

model.fit(X, Y, validation_split=0.33, epochs=150, batch_size=10)

validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。

注意,validation_split的划分在shuffle之前,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀。

Keras库中,`fit()`函数用于训练模型,它通常接收两个主要的输入格式: 1. **训练数据**:这是模型学习的基础,通常由两部分组成 - 输入数据和对应的标签。对于监督学习任务,输入可以是张量(Tensor),比如形状为`(batch_size, input_shape)`的一维或二维数组,表示批量的数据实例;标签通常是形状为`(batch_size, output_dim)`的一维数组,对于分类任务是类别索引,对于回归任务则是连续数值。你可以直接提供这些数据,也可以通过数据生成器(如`ImageDataGenerator`)动态生成数据。 2. **训练配置**:这是一个字典,包含了训练过程的各种参数,如批次大小(`batch_size`)、总迭代次数(`epochs`)、验证数据集(`validation_data`)、损失函数(`loss`)、优化器(`optimizer`)、回调函数等(如`ModelCheckpoint`、`EarlyStopping`)。这些参数帮助定义了训练的具体流程。 例子: ```python model.fit(x_train, y_train, epochs=10, batch_size=32, validation_split=0.2, callbacks=[checkpoint], verbose=1) ``` 其中: - `x_train` 和 `y_train` 分别是输入数据和对应标签。 - `epochs` 定义了训练轮数。 - `validation_split` 指定验证集的比例,如果没有指定验证数据,则会从训练数据中自动切分一部分作为验证集。 - `callbacks` 列表里包含训练过程中的一些辅助函数,如保存最优模型等。 - `verbose` 可选参数,设置训练过程的详细程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值