扩展欧几里得算法

在讲解扩展欧几里得之前我们先回顾下辗转相除法:

gcd(a,b)=gcd(b,a%b) g c d ( a , b ) = g c d ( b , a % b )
a%b==0 a % b == 0 的时候b即为所求最大公约数
好了切入正题:
简单地来说exgcd函数求解的是 ax+by=gcd(a,b) a x + b y = g c d ( a , b ) 的最小正整数解。根据数论的相关知识,一定存在一组解 x,y x , y 使得 ax+by=gcd(a,b) a x + b y = g c d ( a , b ) 当且仅当 a a b互质的时候。那就来谈谈具体如何来求解吧。
根据辗转相除法的内容 gcd(a,b)=gcd(b,a%b) g c d ( a , b ) = g c d ( b , a % b ) 我们可以得到:
ax1+by1=gcd(a,b)=gcd(b,a%b)=bx2+a%by2 a x 1 + b y 1 = g c d ( a , b ) = g c d ( b , a % b ) = b x 2 + a % b y 2 · · · · · · ①

又由于 a%b=aa÷b×b a % b = a − ⌊ a ÷ b ⌋ × b
在计算机中 a%b=a÷b×b=a/bb a % b = ⌊ a ÷ b ⌋ × b = a / b ∗ b 所以
bx2+a%by2=bx2+(aa/bb)y2 b x 2 + a % b y 2 = b x 2 + ( a − a / b ∗ b ) y 2

将等式①变形得:
ax1+b(y1+a/by2)=ay2+bx2 a x 1 + b ( y 1 + a / b ∗ y 2 ) = a y 2 + b x 2

因为等式左右两边结构相同我们可以解得:
{x1=y2y1=x2a/by2 { x 1 = y 2 y 1 = x 2 − a / b ∗ y 2

在扩展欧几里得算法的最后一步即 b=0 b = 0 的时候,显然有一对整数 x=1,y=0 x = 1 , y = 0 使得
a1+b0=gcd(a,0) a ∗ 1 + b ∗ 0 = g c d ( a , 0 )

那么我们就可以通过编程实现exgcd了,请仔细体验下代码的精妙之处:

int exgcd(int a,int b,int &x,int &y) {
    if(b) {
        int d=exgcd(b,a%b,y,x);
        y-=a/b*x;
    } else {
        x=1;
        y=0;
        return a;
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值