第三章,矩阵,01-矩阵的简单运算

同型矩阵

若矩阵A和矩阵B的行数与列数都相等,则称A和B为同型矩阵。

相等

两个同型矩阵的对应元素相等,则称矩阵相等,记作 A = B A=B A=B

负矩阵

对矩阵A中所有元素取相反数即得到矩阵A的负矩阵,记为-A。

加法与减法

同型矩阵对应元素相加/减
C = A + B = ( a i j + b i j ) C=A+B=(a_{ij}+b_{ij}) C=A+B=(aij+bij)

加法运算规则

A , B , C , A,B,C, ABC0都是m×n矩阵,加法满足以下规则:

  1. 加法交换律: A + B = B + A ; A+B=B+A; A+B=B+A;
  2. 加法结合律: ( A + B ) + C = A + ( B + C ) ; (A+B)+C=A+(B+C); (A+B)+C=A+(B+C);
  3. 零矩阵满足: A A A+0= A A A
  4. 存在矩阵 − A , 满 足 : A − A = A + ( − A ) = -A,满足:A-A=A+(-A)= AAA=A+(A)=0

减法

由加法和负矩阵来定义,即
A − B = A + ( − B ) A-B=A+(-B) AB=A+(B)

数乘

设矩阵 A m × n , λ A_{m×n},\lambda Am×n,λ为任意实数,则称矩阵 C m × n C_{m×n} Cm×n为数 λ \lambda λ与矩阵 A A A数乘,其中 c i j = λ a , i j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) c_{ij}=\lambda a_{,ij}(i=1,2,\cdots,m;j=1,2,\cdots,n) cij=λa,ij(i=1,2,,m;j=1,2,,n),记为 C = λ A C=\lambda A C=λA

数乘运算规则

对数 k , l k,l k,l m × n m×n m×n矩阵 A , B A,B A,B满足以下运算规则:

  1. 数对矩阵的分配律: k ( A + B ) = k A + k B ; k(A+B)=kA+kB; k(A+B)=kA+kB;
  2. 矩阵对数的分配律: ( k + l ) A = k A + l A ; (k+l)A=kA+lA; (k+l)A=kA+lA;
  3. 数与矩阵的结合律: ( k l ) A = k ( l A ) ; (kl)A=k(lA); (kl)A=k(lA);
  4. 数1与矩阵满足: 1 A = A . 1A=A. 1A=A.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值