第二章 排列组合
1、四个基本技术原理
加法原理:把集合S划分成少量的互不相交的易处理的部分。
当允许
s
1
,
s
2
,
s
3
s_1,s_2,s_3
s1,s2,s3 相交时,就可以使用容斥原理计数
乘法原理:令S为有序对(a,b)的集合,a来自大小为p的集合,b来自大小为q的集合,加法原理的推论
两种思路思考问题:其实一种用加法原理,一种用减法原理
P17最后一题
减法原理:从全集U中减去A的补集。先不考虑限制计算全集,然后在把限制的删去
除法原理:知道S中对象的数目,以及各部分所含对象数目的共同值,就可以确定部分的数目
例1:在1000和9999之间有多少个不相同的奇数。
先考虑个位,共有1、3、5、7、9,一共5中可能,再考虑千位,共有8中选择,再考虑百位和十位有8种和7种可能。即
5
×
8
×
8
×
7
=
2240
5\times 8\times 8\times 7=2240
5×8×8×7=2240
经验法则:优先选择约束性最强的选择
例2:在0和10000之间有多少个整数恰好有一个数字是5?
解法一:对S做划分,S_1表示S中一位数的集合,S_2表示S中两位数的集合,依次类推
解法二:添加前道零,6看做0006,这样就可以把S中的每一个数都看作是4位数,根据5的位置划分为
S
1
′
,
S
2
′
,
S
3
′
,
S
4
′
S_1',S_2',S_3',S_4'
S1′,S2′,S3′,S4′,共有
9
×
9
×
9
=
729
9\times 9\times 9=729
9×9×9=729个数,答案为
4
×
9
×
9
×
9
=
2916
4\times 9\times 9\times 9=2916
4×9×9×9=2916
2、集合的排列
定理1:P(n,r)表示 n 元素集合的 r 排列的数目
例一:数字1、1、1、3、8,能做成多少个不同的5位数
解一:3有5种放法,8有4种放法,其余位置都放
1
1
1,共有
5
×
4
=
20
5\times 4=20
5×4=20
解二:全排列后消序:
p
5
5
p
3
3
\frac {p_5^5}{p_3^3}
p33p55
例2:将字母表的26个字母排序,使得元音字母a,e,i,o,u中任意两个字母都不连续出现的方法总数
思路:先放21个辅音字母21!,然后在22个空中放5个元音字母,答案为:
21
!
×
P
22
5
21!\times P_{22}^5
21!×P225
例3:取自
{
1
,
2
,
3
,
4
,
…
,
9
}
\{1,2,3,4,\dots,9\}
{1,2,3,4,…,9} 的所有7位数中有多少位各位不相同,且数字5和6不连续出现的7位数?
解法一:加法原理:分成4类
(1)7位数字不出现5和6,7!
(2)7位数字中出现5不出现6,5有7种摆法,其余7个数字有
P
7
6
P_7^6
P76种摆法
(3)7位数字中出现6不出现5,同上
(4)7位数字中5和6同时出现,分为5在第一位出现,5在最后一位出现,5在中间出现。先决策6,共有
5
×
p
7
5
×
2
+
5
×
4
×
P
7
5
5\times p_7^5 \times 2+5\times 4\times P_7^5
5×p75×2+5×4×P75
解法二:减法原理:先计算全部的7位数,然后把5、6两个数连续的个数删去。捆绑5和6为一个元素排序,答案为
P
9
7
−
P
2
2
×
6
×
P
7
5
=
151200
P_9^7-P_2^2\times 6\times P_7^5=151200
P97−P22×6×P75=151200
定理2:圆排列,n元素的循环 r 排列的数目是
P
n
r
r
=
n
!
r
(
n
−
r
)
!
\frac {P_n^r}{r}=\frac{n!}{r (n-r)!}
rPnr=r(n−r)!n!,其实就是n元素的r排列,然后取消 r 的重复数
证明:对n元素的线性r排列划分成若干个部分,使每两个线性r排列对应于同一个循环r排列当且仅当这两个线性r排列在同一个部分中,此时循环r排列的数目等于划分的数目。每个部分有r个线性r排列,因此每个部分就是
P
n
r
r
\frac {P_n^r}{r}
rPnr
除法原理的应用要求:每一个部分都含有相同r排列。
另一个计数循环r排列的方法
- 因为是循环的所以可以把其中一个点固定,就留下了剩余元素的全排列的方法数
例1:5个人围坐在9个位置的圆桌上的排列数
解法1:公式法:
P
9
5
5
\frac {P_9^5}{5}
5P95
解法2:固定桌头的方法:先选择 r 个位置,然后固定一个点,剩余点的排列
C
9
5
×
4
!
C_9^5\times 4!
C95×4!
例2:10个人围坐在圆桌上,其中两个人不能坐在一个的方案数。
解法1:减法原理。10个人的方案有9!,减去不合法的就是将这两个人捆绑在一起,和剩余的8个人一起计数
P
2
2
×
P
9
9
9
P_2^2\times \frac {P_9^9}{9}
P22×9P99,答案就是
7
×
8
!
7\times 8!
7×8!
解法2:将P_1固定在桌头,
3、集合的组合(子集)
集合的组合就是集合的一个无序选择,也是子集
用
(
r
n
)
(_r^n)
(rn)表示 n 元素集合的 r 子集数目
C
n
r
=
0
,
(
r
>
n
)
,
C
0
r
=
0
(
r
>
0
)
,
C
0
0
=
1
C_n^r=0, \ (r>n), \ C_0^r=0 \ (r>0),C_0^0=1
Cnr=0, (r>n), C0r=0 (r>0),C00=1
C
n
0
=
1
,
C
n
1
=
n
,
C
n
n
=
1
C_n^0=1, \ C_n^1=n, \ C_n^n=1
Cn0=1, Cn1=n, Cnn=1
C
n
r
×
r
!
=
P
n
r
C_n^r\times r!=P_n^r
Cnr×r!=Pnr
C
n
r
=
P
n
r
r
!
=
n
!
r
!
×
(
n
−
r
)
!
C_n^r=\frac {P_n^r}{r!}=\frac {n!}{r!\times (n-r)!}
Cnr=r!Pnr=r!×(n−r)!n!
C
n
r
=
C
n
n
−
r
C_n^r=C_n^{n-r}
Cnr=Cnn−r
帕斯卡公式(杨辉三角)
C
n
r
=
C
n
−
1
r
−
1
+
C
n
−
1
r
C_n^r=C_{n-1}^{r-1}+C_{n-1}^{r}
Cnr=Cn−1r−1+Cn−1r
定理:对于
n
≥
0
n\ge 0
n≥0有:
C
n
0
+
C
n
1
+
C
n
2
+
C
n
3
+
…
C
n
n
=
2
n
C_n^0+C_n^1+C_n^2+C_n^3+\dots C_n^n=2^n
Cn0+Cn1+Cn2+Cn3+…Cnn=2n
证明:利用双计数,等式左边刚好等于n元素集合中元素取
0
,
1
,
2
,
…
n
0,1,2,\dots n
0,1,2,…n等式右边就等相当于对于一个集合中的元素取或者不取的结果,也就是
2
n
2^n
2n
双计数举例:第一个计数,n元素集合2子集个数是
C
n
2
C_n^2
Cn2,第二个计数,对于每一个
i
=
1
,
2
,
…
,
n
i=1,2,\dots,n
i=1,2,…,n ,以 i 为最大数的2子集的数量是i-1,累加即
0
+
1
+
2
+
3
+
⋯
+
n
−
1
=
C
n
2
0+1+2+3+\dots+n-1=C_n^2
0+1+2+3+⋯+n−1=Cn2
例1:如果每个词包含3、4、5个元音,那么字母表中的26个字母可以构造多少个8字母词?
加法原理:
考虑3个元音的词,先选择3个位置,再放元音,在其余位置放辅音:
C
8
3
×
5
3
×
2
1
5
C_8^3\times 5^3\times 21^5
C83×53×215
4个元音的词:
C
8
4
×
5
4
×
2
1
4
C_8^4\times 5^4\times 21^4
C84×54×214
5个元音的词:
C
8
5
×
5
5
×
2
1
3
C_8^5\times 5^5\times 21^3
C85×55×213
4、多重集合的排列
n元素集合S的n排列也称为S的排列
定理1:设有k种不同类型对象的多重集合S,每一个元素都有无限个重复数,那么S的 r 排列数目是
k
r
k^r
kr。证明: r 个位置每个位置都有 k 种方式排列
例1::最多有4位的三元数的个数是多少
3
4
=
81
3^4=81
34=81,每一位都有0,1,2三种可能
定理2:设有k种不同类型的对象的多重集合S,每一种类型的有限重复数是
n
1
,
n
2
,
n
3
,
n
4
,
…
,
n
k
n_1,n_2,n_3,n_4,\dots,n_k
n1,n2,n3,n4,…,nk。设S的大小为
n
=
n
1
+
n
2
+
⋯
+
n
k
n=n_1+n_2+\dots+n_k
n=n1+n2+⋯+nk,那么S的 n 排列数为:
n
!
n
1
!
n
2
!
…
n
k
!
\frac {n!}{n_1!n_2!\dots n_k!}
n1!n2!…nk!n!
这里只有多重集合S的 n 排列数的公式,并没有多重集合S的 r 排列数的简单公式,可以用生成函数求解
证明:就是按正常思路来,假设有n个位置,首先放置第一个类型
a
1
a_1
a1的
n
1
n_1
n1个元素,然后放置第二个类型
a
2
a_2
a2的
n
2
n_2
n2个元素,依次类推,即
C
n
n
1
×
C
n
−
n
1
n
2
×
C
n
−
n
1
−
n
2
n
3
⋯
×
C
n
−
n
1
−
n
2
−
⋯
−
n
k
−
1
n
k
C_n^{n_1} \times C_{n-n_1}^{n_2}\times C_{n-n_1-n_2}^{n_3}\dots \times C_{n-n_1-n_2-\dots -n_{k-1}}^{n_k}
Cnn1×Cn−n1n2×Cn−n1−n2n3⋯×Cn−n1−n2−⋯−nk−1nk
对上式化简即可得: n ! n 1 ! n 2 ! … n k ! \frac {n!}{n_1!n_2!\dots n_k!} n1!n2!…nk!n!
我们可以把 C n n 1 C_n^{n_1} Cnn1看做是 n n n元素集合的 n 1 n_1 n1子集数,也可以看做是有两种类型的对象且重复数分别为 n 1 n_1 n1和 n − n 1 n-n_1 n−n1的多重集合的排列数
对公式
n
!
n
1
!
n
2
!
…
n
k
!
\frac {n!}{n_1!n_2!\dots n_k!}
n1!n2!…nk!n!的另一种理解方式
定理3:把一个集合S中的n个对象分成指定大小分别为
n
1
,
n
2
,
n
3
…
,
n
k
n_1,n_2,n_3\dots,n_k
n1,n2,n3…,nk的k个标签的盒子,这样划分方法数为
n
!
n
1
!
n
2
!
…
n
k
!
\frac {n!}{n_1!n_2!\dots n_k!}
n1!n2!…nk!n!,如果盒子没有标签,且
n
1
=
n
2
=
⋯
=
n
k
n_1=n_2=\dots=n_k
n1=n2=⋯=nk,那么划分数为
n
!
k
!
n
1
!
n
2
!
…
n
k
!
\frac {n!}{k!n_1!n_2!\dots n_k!}
k!n1!n2!…nk!n!
证明:就是先选取
n
1
n_1
n1个对象放入盒子1,再选n_2个对象放入盒子2,依次类推
如果没有标签,并且
n
1
=
n
2
=
n
3
=
⋯
=
n
k
n_1=n_2=n_3=\dots=n_k
n1=n2=n3=⋯=nk,那么就可运用除法原理,因为对于把这些对象分配到k个没有标签的盒子里的每一种方法,都有k!种方法给这些盒子标上标签
1
,
2
,
…
,
k
1,2,\dots,k
1,2,…,k ,因此划分的个数为
n
!
k
!
n
1
!
n
2
!
…
n
k
!
\frac {n!}{k!n_1!n_2!\dots n_k!}
k!n1!n2!…nk!n!
更困难的是划分的部分没有指定的大小,8.2节中讨论
例:有多少种方法在
8
×
8
8\times 8
8×8 棋盘上放置8个非攻击型车?
对每个车赋予坐标为
(
1
,
j
1
)
,
(
2
,
j
2
)
,
(
3
,
j
3
)
,
…
,
(
8
,
j
8
)
(1,j_1),(2,j_2),(3,j_3),\dots,(8,j_8)
(1,j1),(2,j2),(3,j3),…,(8,j8) ,那么只有当
j
1
,
j
2
,
…
,
j
8
j_1,j_2,\dots,j_8
j1,j2,…,j8为{1,2,3,4,5,6,7,8}的一个排列的时候,才是合法的
1、如果车没有区别那么,答案就是8!
2、如果说8个车有8种颜色,那么那么对于8个被占据的方格(8!)之后,还要讨论车的颜色,从第一维i观察,即观察第一行到最后一行我们看到8个颜色的一种排列,即8!,因此答案就是,
8
!
×
8
!
8!\times 8!
8!×8!
3、如果说8个车,分别为1红,3蓝,4黄,那么第一维的排列数为
8
!
1
!
3
!
4
!
\frac {8!}{1!3!4!}
1!3!4!8!,那么答案就是
8
!
×
8
!
1
!
3
!
4
!
8!\times \frac {8!}{1!3!4!}
8!×1!3!4!8!
定理:一般地,有 k 中颜色共 n 个车,第一种颜色有 n 1 n_1 n1个,第二种颜色有 n 2 n_2 n2个, … \dots …,把这些车放在棋盘上互不攻击的方案数为 n ! n ! n 1 ! n 2 … n k ! n!\frac{n!}{n_1!n_2\dots n_k!} n!n1!n2…nk!n!
5、多重集合的组合
多重集合S的r组合是S中 r 个对象的无序选择,也是一个集合。通常用组合形容多重子集,用子集形容集合的子集
定理:设多重集合S有k种类型的对象,重复数无限,那么S的 r 组合数是
C
r
+
k
−
1
r
C_{r+k-1}^{r}
Cr+k−1r另一种表述方式, k 个不同对象的 r 组合方式
k 种类型的最小重复数都大于 r 的时候,都是成立的
理解:其实就是我们要选取r个对象,我们不知道这r个对象具体在k个集合中取多少个,就相当于r个对象, 然后用k-1块隔板去分隔的数量,相当于r+k-1个对象,选取r个的组合数。也就相当于 x 1 + x 2 + x 3 + ⋯ + x k = r x_1+x_2+x_3+\dots+x_k=r x1+x2+x3+⋯+xk=r的解的个数
这里还有情况就是重复数不是无限的组合
设有k种不同类型的对象的多重集合S,每一种类型的有限重复数是
n
1
,
n
2
,
n
3
,
n
4
,
…
,
n
k
n_1,n_2,n_3,n_4,\dots,n_k
n1,n2,n3,n4,…,nk。该多重集合S的r组合计数与下述式子解相同
x
1
+
x
2
+
⋯
+
x
k
=
r
x_1+x_2+\dots +x_k=r
x1+x2+⋯+xk=r
对于下界可以使用直接减去的办法,对于上界需要使用容斥原理解决
6、有限概率
实验的每个结果出现是等可能的,那么我们称它为随机实验,所有可能结果的集合称为这个实验的样本空间S
例1:设n是正整数。假设我们在1和n之间随机选出一个整数序列(可以重复取同一个数)。问这个序列刚好有n-1个不同整数的概率是多少?
解:设F是刚好有n-1个不同整数的事件,首先我们有1个数出现两次,n-2个数出现一次,有1个数一次也没有出现。先选取出现两次的数有n中取法,取没有出现的数有n-1种取法。然后排,出现两次的数是取两个位置
C
n
2
C_n^2
Cn2,出现1次的数是
P
n
−
2
n
−
2
P_{n-2}^{n-2}
Pn−2n−2,即
n
×
(
n
−
1
)
×
C
n
2
×
(
n
−
2
)
!
=
(
n
!
)
2
2
!
(
n
−
2
)
!
n\times (n-1)\times C_n^2\times (n-2)!=\frac{(n!)^2}{2!(n-2)!}
n×(n−1)×Cn2×(n−2)!=2!(n−2)!(n!)2
P ( F ) = ( n ! ) 2 2 ! ( n − 2 ) ! n n P(F)=\frac{(n!)^2}{2!(n-2)!n^n} P(F)=2!(n−2)!nn(n!)2
第3章 鸽巢原理
鸽巢原理:简单形式
定理:如果把n+1个物体放进n个盒子里,那么至少有一个盒子包含至少两个的物体
应用1:13个人至少2人在同一月生日
应用2:n对夫妇,至少选择n+1个人可以保证选出一对夫妇
应用3:给定m个整数
a
1
,
a
2
,
a
3
,
…
,
a
m
a_1,a_2,a_3,\dots,a_m
a1,a2,a3,…,am,存在 l,r满足
1
≤
l
<
r
≤
m
1\le l < r \le m
1≤l<r≤m,使得
a
l
+
a
l
+
1
+
⋯
+
a
r
−
1
+
a
r
a_l+a_{l+1}+\dots+a_{r-1}+a{r}
al+al+1+⋯+ar−1+ar被m整除
证明:作前缀和,m个前缀和取模,如果不整除那么余数不能为0,那么必定有两个余数是相同的,余数相同的这一段就是我们想取的
应用4:国际象棋大师有11周的时间备战一场比赛,他决定每天至少下一盘棋,一周不超过12盘其,请你证明存在连续若干天,大师刚好下了21盘棋
证明:前缀和a_n,是前n天下的总盘数
1
≤
a
1
<
a
2
<
a
3
<
⋯
<
a
77
<
≤
12
×
11
=
132
1\le a_1 <a_2<a_3<\dots<a_{77} <\le 12 \times 11=132
1≤a1<a2<a3<⋯<a77<≤12×11=132
同时构造
22
≤
a
1
+
21
<
a
2
+
21
<
a
3
+
21
<
⋯
<
a
77
+
21
≤
153
22\le a_1+21 <a_2+21<a_3+21<\dots<a_{77} +21\le 153
22≤a1+21<a2+21<a3+21<⋯<a77+21≤153
这样就形成了154个数
a
1
,
a
2
,
a
3
,
…
,
a
77
,
a
1
+
21
,
a
2
+
21
,
a
3
+
21
,
…
,
a
77
+
21
a_1 ,a_2,a_3,\dots,a_{77} ,a_1+21 ,a_2+21,a_3+21,\dots,a_{77} +21
a1,a2,a3,…,a77,a1+21,a2+21,a3+21,…,a77+21
它们的大小不超过153,因此至少有两个数是相等的,即存在
a
i
=
a
j
+
21
a_i=a_j+21
ai=aj+21
应用5:从整数
1
,
2
,
…
,
200
1,2,\dots,200
1,2,…,200 中选出101个整数。证明:存在两个数,一个被另一个整除
证明:把任意整数化简为
2
k
×
a
2^k\times a
2k×a 的模式,
k
≥
0
k\ge 0
k≥0 且a为奇数,那么a可以取
1
,
3
,
5
,
7
,
9
,
…
,
199
1,3,5,7,9,\dots,199
1,3,5,7,9,…,199,取两个数具有相同的a值时,即可整除
鸽巢原理:加强版
定理:如果
q
1
+
q
2
+
⋯
+
q
n
−
n
+
1
q_1+q_2+\dots+q_n-n+1
q1+q2+⋯+qn−n+1 个物体中每一个物体被指定用n种颜色中的一种染色,那么存在某个i,使得第i种物体至少有
q
i
q_i
qi个
推论:如果把n(r-1)+1个物品放在n个盒子里,至少有一个盒子含有r个或更多的物体
平均原理1:如果n个非负整数的平均数大于r-1,那么至少有一个整数大于r
m
1
+
m
2
+
⋯
+
m
n
n
>
r
−
1
\frac {m_1+m_2+\dots+m_n}{n}>r-1
nm1+m2+⋯+mn>r−1
平均原理2:如果n个非负整数的平均数小于r+1,那么其中至少有一个整数小于r+1
m
1
+
m
2
+
⋯
+
m
n
n
<
r
+
1
\frac {m_1+m_2+\dots+m_n}{n}<r+1
nm1+m2+⋯+mn<r+1
平均原理3:如果n个非负整数的平均数至少等于 r ,那么至少有一个满足 m i ≥ r m_i\ge r mi≥r
应用:每个有 n 2 + 1 n^2+1 n2+1个实数构成的序列 a 1 , a 2 , … , a n 2 + 1 a_1,a_2,\dots,a_{n^2+1} a1,a2,…,an2+1或者含有长度为n+1的递增子序列,或者含有长度为n+1的递减子序列
第5章 二项式系数
1、帕斯卡三角形
C
n
r
=
0
C_n^r=0
Cnr=0,(r>n)
C
n
0
=
1
C_n^0=1
Cn0=1,n个里面取0个,得到空集
C
n
k
=
n
!
k
!
(
n
−
k
)
!
=
n
×
(
n
−
1
)
×
⋯
×
(
n
−
k
+
1
)
k
×
(
k
−
1
)
×
(
k
−
2
)
×
⋯
×
1
C_n^k=\frac {n!}{k!(n-k)!}=\frac {n\times (n-1)\times \dots \times (n-k+1)}{k\times (k-1)\times (k-2)\times \dots \times 1}
Cnk=k!(n−k)!n!=k×(k−1)×(k−2)×⋯×1n×(n−1)×⋯×(n−k+1)
C
n
k
=
C
n
n
−
k
C_n^k=C_n^{n-k}
Cnk=Cnn−k
帕斯卡不等式
C
n
k
=
C
n
−
1
k
−
1
+
C
n
−
1
k
C_n^k=C_{n-1}^{k-1}+C_{n-1}^{k}
Cnk=Cn−1k−1+Cn−1k
三角形数
C
n
2
C_n^2
Cn2 表示由
C
n
2
C_n^2
Cn2 个点可以组成三角形
四面体数
C
n
3
C_n^3
Cn3表示由
C
n
3
C_n^3
Cn3 个点可以组成四面体
帕斯卡三角形的解释:
C
n
k
C_n^k
Cnk表示从(0,0)点移动到(n,k)这点的路径数,每次只能往右或右下角走
C
n
k
=
C
n
−
1
k
−
1
+
C
n
−
1
k
C_n^k=C_{n-1}^{k-1}+C_{n-1}^{k}
Cnk=Cn−1k−1+Cn−1k
2、二项式定理
1、
(
x
+
y
)
n
=
C
n
0
x
n
y
0
+
C
n
1
x
n
−
1
y
1
+
⋯
+
C
n
n
−
1
x
1
y
n
−
1
+
C
n
n
x
0
y
n
(x+y)^n=C_n^0x^ny^0+C_n^1x^{n-1}y^1+\dots +C_n^{n-1}x^{1}y^{n-1}+C_n^nx^0y^n
(x+y)n=Cn0xny0+Cn1xn−1y1+⋯+Cnn−1x1yn−1+Cnnx0yn
2、简写:
(
x
+
y
)
n
=
∑
k
=
0
n
C
n
k
x
n
−
k
y
k
(x+y)^n=\sum_{k=0}^nC_n^kx^{n-k}y^k
(x+y)n=∑k=0nCnkxn−kyk
3、某些等式:
k
C
n
k
=
n
C
n
−
1
k
−
1
kC_n^k=nC_{n-1}^{k-1}
kCnk=nCn−1k−1
4、取x=1,y=1,可得
C
n
0
+
C
n
1
+
C
n
2
+
⋯
+
C
n
n
=
2
n
C_n^0+C_n^1+C_n^2+\dots +C_n^n=2^n
Cn0+Cn1+Cn2+⋯+Cnn=2n
5、取x=1,y=-1,可得
C
n
0
−
C
n
1
+
C
n
2
−
C
n
3
+
⋯
+
(
−
1
)
n
C
n
n
=
0
C_n^0-C_n^1+C_n^2-C_n^3+\dots +(-1)^nC_n^n=0
Cn0−Cn1+Cn2−Cn3+⋯+(−1)nCnn=0
移项得:
C
n
0
+
C
n
2
+
⋯
=
C
n
1
+
C
n
3
+
…
(
n
≥
1
)
=
2
n
−
1
C_n^0+C_n^2+\dots =C_n^1+C_n^3+\dots (n\ge 1)=2^{n-1}
Cn0+Cn2+⋯=Cn1+Cn3+…(n≥1)=2n−1
联立3和4可得:
1
C
n
1
+
2
C
n
2
+
⋯
+
n
C
n
n
=
n
2
n
−
1
1C_n^1+2C_n^2+\dots+nC_n^n=n2^{n-1}
1Cn1+2Cn2+⋯+nCnn=n2n−1
证明1:
1
C
n
1
+
2
C
n
2
+
⋯
+
n
C
n
n
=
n
C
n
−
1
0
+
n
C
n
−
1
1
+
…
n
C
n
−
1
n
−
1
=
n
2
n
−
1
1C_n^1+2C_n^2+\dots+nC_n^n=nC_{n-1}^{0}+nC_{n-1}^1+\dots nC_{n-1}^{n-1}=n2^{n-1}
1Cn1+2Cn2+⋯+nCnn=nCn−10+nCn−11+…nCn−1n−1=n2n−1
证明2:
(
1
+
x
)
n
=
C
n
0
+
C
n
1
x
+
C
n
2
x
2
+
⋯
+
C
n
n
x
n
=
∑
k
=
0
n
C
n
k
x
k
(1+x)^n=C_n^0+C_n^1x+C_n^2x^2+\dots+C_n^nx^n=\sum_{k=0}^nC_n^kx^k
(1+x)n=Cn0+Cn1x+Cn2x2+⋯+Cnnxn=∑k=0nCnkxk
对两边分别求导可得:
n
(
1
+
x
)
n
−
1
=
∑
k
=
1
n
k
C
n
k
x
k
−
1
n(1+x)^{n-1}=\sum_{k=1}^nkC_n^kx^{k-1}
n(1+x)n−1=∑k=1nkCnkxk−1
把x=-1,带入:
n
2
n
−
1
=
∑
k
=
1
n
C
n
k
n2^{n-1}=\sum_{k=1}^nC_n^k
n2n−1=∑k=1nCnk
可以通过对x求导并乘以x的方式得到任意正整数P的恒等式: ∑ k = 1 n k p C n k \sum_{k=1}^nk^pC_n^k ∑k=1nkpCnk
6、等式:
C
2
n
n
=
∑
k
=
0
n
(
C
n
k
)
2
C_{2n}^n=\sum_{k=0}^n(C_n^k)^2
C2nn=∑k=0n(Cnk)2
证明方法:
7、对帕斯卡不等式不断扩展第一项、或者是第二项,可以得到不同的等式
C
n
k
=
C
n
−
1
k
+
C
n
−
1
k
−
1
,
(
k
>
0
)
C_n^k=C_{n-1}^{k}+C_{n-1}^{k-1},(k>0)
Cnk=Cn−1k+Cn−1k−1,(k>0)
扩展第一项可得:
C
n
k
=
C
0
k
+
C
0
k
−
1
+
⋯
+
C
n
−
2
k
−
1
+
C
n
−
1
k
−
1
C_n^k=C_0^k+C_0^{k-1}+\dots+C_{n-2}^{k-1}+C_{n-1}^{k-1}
Cnk=C0k+C0k−1+⋯+Cn−2k−1+Cn−1k−1
扩展第二项可得:
C
n
k
=
C
n
−
1
k
+
C
n
−
2
k
−
1
+
⋯
+
C
n
−
k
1
+
C
n
−
k
+
1
0
+
C
n
−
k
−
1
−
1
C_n^k=C_{n-1}^{k}+C_{n-2}^{k-1}+\dots +C_{n-k}^1+C_{n-k+1}^0+C_{n-k-1}^{-1}
Cnk=Cn−1k+Cn−2k−1+⋯+Cn−k1+Cn−k+10+Cn−k−1−1
可以用n+k+1取代n
第14章 polya计数
设
S
n
S_n
Sn是所有置换的集合,称为n阶对称群
置换群满足三条性质且是S_n置换的非空子集
在几何中有角点对称群、边对称群、面对称群
角点对称群:旋转+反射
Burnside定理
定理1:设G是X的置换群,C是X的着色集合,使C保持不变的置换集合为
G
(
c
)
G(c)
G(c),着色集为
C
(
f
)
C(f)
C(f),我们想要计算与C等价的数量,对于每个置换f,恰好有
∣
G
(
c
)
∣
| G(c)|
∣G(c)∣个置换,作用在c上与f有相同的效果。因为总共有
∣
G
∣
|G|
∣G∣个置换,与c等价的着色数就等于
∣
G
∣
∣
G
(
c
)
∣
\frac{|G|}{|G(c)|}
∣G(c)∣∣G∣
定理2:设G是X的置换群,而C是X中一个满足下面条件的着色集合:对于G中所有的f和C中所有的c都有f*c仍在C中,则C中的非等价着色数N(G,C),即
N
(
G
,
C
)
=
1
∣
G
∣
∑
f
∈
G
∣
C
(
f
)
∣
N(G,C)=\frac 1{|G|}\sum_{f\in G} |C(f)|
N(G,C)=∣G∣1f∈G∑∣C(f)∣
换言之,C中非等价的着色数等于在G中每个 f f f 的置换作用下保持不变的着色的平均数
例题:设有k种颜色对正n角形染色,有多少种方法
解题步骤
1、首先根据旋转、反射等信息,确定置换群
G
=
{
f
1
,
f
2
,
…
,
f
n
}
G=\{f_1,f_2,\dots,f_n\}
G={f1,f2,…,fn}
2、然后枚举每一个置换
f
i
f_i
fi,计算
f
i
f_i
fi能够保持多少个c的着色不变,即
C
(
f
)
C(f)
C(f)的大小
方法一:直接计算
(1)旋转:
- 恒等置换(单位元):一种有n个位置,每个位置有k种颜色可以选择,有 k n k^n kn个着色 c 保持不变
- 其余n-1个旋转置换:只有所有位置取同一种颜色时才能够保持不变,一共有k种颜色,因此有k个着色c在f的作用下保持不变
(2)反射:
按对称轴讨论有多少种选择即可
- 如果n是奇数那么有:对于每一个对称置换 f f f有,顶点单独选择一种颜色,其余点按对称轴对应两点选择一种颜色,因此有 k × k n − 1 2 k\times k^{\frac {n-1}{2}} k×k2n−1个着色保持不变,这样的置换一共有n种,因此总数为 n × k × k n − 1 2 n\times k\times k^{\frac {n-1}{2}} n×k×k2n−1
- 如果n为偶数那么有:如果按顶点对称的,那么两个顶点选择一种颜色,其余点按对称轴对应两点选择一种颜色,有
k
2
×
k
n
−
2
2
k^2\times k^{\frac {n-2}2}
k2×k2n−2,这样的置换有
n
2
\frac n2
2n个,因此有
n
2
×
k
2
×
k
n
−
2
2
\frac n2\times k^2\times k^{\frac {n-2}2}
2n×k2×k2n−2
如果按中线对称,那么就对应两点选择一种颜色,有 k n 2 k^{\frac n2} k2n个着色,这样的置换有 n 2 \frac n2 2n个,因此有 n 2 × k n 2 \frac n2\times k^{\frac n2} 2n×k2n
因此总数为 n 2 × k n 2 + n 2 × k 2 × k n − 2 2 \frac n2\times k^{\frac n2}+\frac n2\times k^2\times k^{\frac {n-2}2} 2n×k2n+2n×k2×k2n−2
方法二:polya计数
对每个置换
f
i
f_i
fi作循环因子分解,每一个因子中的所有点颜色相同,可以得到因子的个数 #
(
f
)
(f)
(f),如果计算的是这样没有指定颜色限制的非等价着色数,那么
C
(
f
)
=
k
#
(
f
)
C(f)=k^{\#(f)}
C(f)=k#(f)
3、带入公式 N ( G , C ) = 1 ∣ G ∣ ∑ f ∈ G ∣ C ( f ) ∣ N(G,C)=\frac 1{|G|}\sum_{f\in G} |C(f)| N(G,C)=∣G∣1∑f∈G∣C(f)∣求解答案
polya定理
定义G的循环指数 P G ( z 1 , z 2 , … , z k ) = 1 ∣ G ∣ ∑ f ∈ G z 1 e 1 z 2 e 2 … z k e k P_G(z_1,z_2,\dots,z_k)=\frac 1{|G|}\sum_{f\in G}z_1^{e_1}z_2^{e_2}\dots z_k^{e_k} PG(z1,z2,…,zk)=∣G∣1f∈G∑z1e1z2e2…zkek
z 1 z_1 z1代表1循环可选择的颜色, z 2 z_2 z2代表2循环可选择,依次类推。同时, e 1 e_1 e1表示1循环因子的个数, e 2 e_2 e2表示2循环因子的个数,依次类推
设X是元素集合,G是X的置换群,
{
u
1
,
u
2
,
…
,
u
k
}
\{u_1,u_2,\dots,u_k\}
{u1,u2,…,uk}是k中颜色的集合,C是X的任意着色集。这时,针对各颜色的数目的C的非等价着色数的生成函数是
P
G
(
u
1
+
⋯
+
u
k
,
u
1
2
+
…
,
u
k
2
,
…
,
u
1
n
+
⋯
+
u
k
n
)
P_G(u_1+\dots+u_k,u_1^2+\dots,u_k^2,\dots,u_1^n+\dots+u_k^n)
PG(u1+⋯+uk,u12+…,uk2,…,u1n+⋯+ukn)
生成函数中的项 u 1 p 1 u 2 p 2 … u k p k u_1^{p_1}u_2^{p_2}\dots u_k^{p_k} u1p1u2p2…ukpk的系数等于C中把X的 p 1 p_1 p1个元素着色为 u 1 u_1 u1, p 2 p_2 p2个元素着色为 u 2 u_2 u2, p k p_k pk个元素着色为 u k u_k uk的非等价着色数
P G ( u 1 + ⋯ + u k , u 1 2 + … , u k 2 , … , u 1 n + ⋯ + u k n ) P_G(u_1+\dots+u_k,u_1^2+\dots,u_k^2,\dots,u_1^n+\dots+u_k^n) PG(u1+⋯+uk,u12+…,uk2,…,u1n+⋯+ukn)是对 P G ( z 1 , z 2 , … , z k ) P_G(z_1,z_2,\dots,z_k) PG(z1,z2,…,zk)的一种替换,每一个 z i z_i zi,有k种颜色可以选择,把这个因子内的点着色为相同颜色,因此是 u x i u_x^i uxi
解题步骤
1、首先确定置换群
G
=
{
f
1
,
f
2
,
…
,
f
n
}
G=\{f_1,f_2,\dots,f_n\}
G={f1,f2,…,fn}
2、然后枚举每一个置换
f
i
f_i
fi,分解循环因子,得出
t
y
p
e
(
f
)
=
(
e
1
,
e
2
,
…
,
e
n
)
type(f)=(e_1,e_2,\dots,e_n)
type(f)=(e1,e2,…,en),然后得到单项式
m
o
n
(
f
)
=
z
1
e
1
z
2
e
2
…
z
n
e
n
mon(f)=z_1^{e_1}z_2^{e_2}\dots z_n^{e_n}
mon(f)=z1e1z2e2…znen
3、得到
P
G
(
z
1
,
z
2
,
…
,
z
k
)
=
1
∣
G
∣
∑
f
∈
G
m
o
n
(
f
)
=
1
∣
G
∣
∑
f
∈
G
z
1
e
1
z
2
e
2
…
z
k
e
k
P_G(z_1,z_2,\dots,z_k)=\frac 1{|G|}\sum_{f \in G} mon(f)=\frac 1{|G|}\sum_{f\in G}z_1^{e_1}z_2^{e_2}\dots z_k^{e_k}
PG(z1,z2,…,zk)=∣G∣1∑f∈Gmon(f)=∣G∣1∑f∈Gz1e1z2e2…zkek
4、将k种颜色的集合
{
u
1
,
u
2
,
…
,
u
k
}
\{u_1,u_2,\dots,u_k\}
{u1,u2,…,uk}代入得到
P
G
(
u
1
+
⋯
+
u
k
,
u
1
2
+
…
,
u
k
2
,
…
,
u
1
n
+
⋯
+
u
k
n
)
P_G(u_1+\dots+u_k,u_1^2+\dots,u_k^2,\dots,u_1^n+\dots+u_k^n)
PG(u1+⋯+uk,u12+…,uk2,…,u1n+⋯+ukn),然后选择符合题意的项,选择它的系数即可