Preference similarity network structural equivalence clustering based consensus group decision makin

该文探讨了互补偏好关系,将其转化为强度偏好向量,并构建无向权重偏好相似网络,通过结构等价计算专家重要性。接着,利用余弦相似度进行层次聚类以达成共识群体决策,同时通过反馈调整优化过程。
摘要由CSDN通过智能技术生成

在这里插入图片描述

1.互补偏好关系

每一位专家对方案集进行两两比较,得到一个评价值。
在这里插入图片描述
进一步,将互补偏好关系转化为强度偏好向量:
在这里插入图片描述

2. 无向权重偏好相似网络的结构等价

在这里插入图片描述

计算余弦相似度,得到专家相似度矩阵。
在这里插入图片描述
专家偏好相似度中心指数:
在这里插入图片描述
因此,可以求出在无向权重偏好相似性网络中最重要的那一位专家(数值最大)。

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值