求排列的逆序数## 标题
1020:求排列的逆序数
查看提交统计提问
总时间限制: 1000ms 内存限制: 65536kB
描述
在Internet上的搜索引擎经常需要对信息进行比较,比如可以通过某个人对一些事物的排名来估计他(或她)对各种不同信息的兴趣,从而实现个性化的服务。
对于不同的排名结果可以用逆序来评价它们之间的差异。考虑1,2,…,n的排列i1,i2,…,in,如果其中存在j,k,满足 j < k 且 ij > ik, 那么就称(ij,ik)是这个排列的一个逆序。
一个排列含有逆序的个数称为这个排列的逆序数。例如排列 263451 含有8个逆序(2,1),(6,3),(6,4),(6,5),(6,1),(3,1),(4,1),(5,1),因此该排列的逆序数就是8。显然,由1,2,…,n 构成的所有n!个排列中,最小的逆序数是0,对应的排列就是1,2,…,n;最大的逆序数是n(n-1)/2,对应的排列就是n,(n-1),…,2,1。逆序数越大的排列与原始排列的差异度就越大。
现给定1,2,…,n的一个排列,求它的逆序数。
输入
第一行是一个整数n,表示该排列有n个数(n <= 100000)。
第二行是n个不同的正整数,之间以空格隔开,表示该排列。
输出
输出该排列的逆序数。
样例输入
6
2 6 3 4 5 1
样例输出
8
提示
- 利用二分归并排序算法(分治);
- 注意结果可能超过int的范围,需要用long long存储。
解题思路
1.分治的思想是将整个事件分成多个事件,从最小的单元出发逐渐累积成整个事件。将样例分成倒数第二小的单元就是【(26)(3)】【(45)(1)】,先让最小单元2与6比,2,6分别与3比,右边也是如此,然后2与4,5,1比,6与4,5,1比……
2.将子区间排序(小到大为例)。
3.小到大的递归就是归并排序,当右边的第一个数比左边的第一个数小的时候,就说明右边这个数比左边第二个数往后的所有数都小,这就是逆序对→记录s对数。将原数组更新,下一次递归需要更新后的数组(为保证不重不漏)。
#include <bits/stdc++.h>
using namespace std;
const int MAx = 1e5 + 10;
int a[MAx],tmp[MAx],n;
long long s = 0;
void merge_sort(int a[], int l, int r){
if (l >= r) return ;
int mid = (l + r) >> 1;
merge_sort(a, l, mid);
merge_sort(a, mid + 1, r);
int k = 0, i = l, j = mid + 1;
while (i <= mid && j <= r){
if (a[i] <= a[j]) {
tmp[k++] = a[i++];
}
else {
s += mid - i + 1;//右边的数j小于左边数i,则a[j]小于i右边的数
tmp[k++] = a[j++];
}
}
while (i <= mid) tmp[k++] = a[i++];
while (j <= r) tmp[k++] = a[j++];
/*将排好序的数组存回a[]数组 */
for (i = l, j = 0; i <= r; i++, j++) a[i] = tmp[j];
}
int main(){
cin >> n;
for(int i = 0; i < n ; i++)
scanf("%d", &a[i]);
merge_sort(a, 0, n - 1);
cout << s << endl;
return 0;
}