TreeMap源码分析

一、内部结构

1、TreeMap的成员变量

    /**
     * key的比较器
     */
    private final Comparator<? super K> comparator;

    /**
     * 红黑树的根节点
     */
    private transient Entry<K,V> root;

    /**
     * 树形结构的大小
     */
    private transient int size = 0;

    /**
     * 树形结构修改次数
     */
    private transient int modCount = 0;

2、红黑树节点Entry结构:

K key;
V value;
Entry<K,V> left;
Entry<K,V> right;
Entry<K,V> parent;
boolean color = BLACK;

3、红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色。 

红黑树特性:

性质1. 节点是红色或黑色

性质2. 根节点是黑色 (非根节点,默认红色)

性质3.所有叶子都是黑色。(叶子是NIL节点) 

性质4. 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)

性质5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点

二、源码分析(下面的源码都是以jdk8为例)

1、put方法分析

  1. 跟节点为空时,初始化root节点
  2. 找到待插入节点的父节点。
  3. 调用fixAfterInsertion方法,修复插入后的结果,使插入后仍然是红黑树
public V put(K key, V value) {
        Entry<K,V> t = root;
        if (t == null) {
            compare(key, key); // type (and possibly null) check

            root = new Entry<>(key, value, null);
            size = 1;
            modCount++;
            return null;
        }
        int cmp;
        Entry<K,V> parent;
        // split comparator and comparable paths
        Comparator<? super K> cpr = comparator;
        if (cpr != null) {
            do {
                parent = t;
                cmp = cpr.compare(key, t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        else {
            if (key == null)
                throw new NullPointerException();
            @SuppressWarnings("unchecked")
                Comparable<? super K> k = (Comparable<? super K>) key;
            do {
                parent = t;
                cmp = k.compareTo(t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        Entry<K,V> e = new Entry<>(key, value, parent);
        if (cmp < 0)
            parent.left = e;
        else
            parent.right = e;
        fixAfterInsertion(e);
        size++;
        modCount++;
        return null;
    }

fixAfterInsertion方法的源码如下:

private void fixAfterInsertion(Entry<K,V> x) {
    x.color = RED;

    while (x != null && x != root && x.parent.color == RED) {
        if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
            Entry<K,V> y = rightOf(parentOf(parentOf(x)));
            if (colorOf(y) == RED) {
                setColor(parentOf(x), BLACK);
                setColor(y, BLACK);
                setColor(parentOf(parentOf(x)), RED);
                x = parentOf(parentOf(x));
            } else {
                if (x == rightOf(parentOf(x))) {
                    x = parentOf(x);
                    rotateLeft(x);
                }
                setColor(parentOf(x), BLACK);
                setColor(parentOf(parentOf(x)), RED);
                rotateRight(parentOf(parentOf(x)));
            }
        } else {
            Entry<K,V> y = leftOf(parentOf(parentOf(x)));
            if (colorOf(y) == RED) {
                setColor(parentOf(x), BLACK);
                setColor(y, BLACK);
                setColor(parentOf(parentOf(x)), RED);
                x = parentOf(parentOf(x));
            } else {
                if (x == leftOf(parentOf(x))) {
                    x = parentOf(x);
                    rotateRight(x);
                }
                setColor(parentOf(x), BLACK);
                setColor(parentOf(parentOf(x)), RED);
                rotateLeft(parentOf(parentOf(x)));
            }
        }
    }
    root.color = BLACK;
}

fixAfterInsertion是红黑树的核心方法,分为如下几种情况:

  1. 第2行代码:默认新插入的节点为红色
  2. 第4行代码:
    1. 父节点是红色时,则执行第5~38行代码,需要做红黑树的调整。原因:父节点红色,子节点红色,不符合红黑树定义。
    2. 父节点是黑色时,新插入节点(默认新插入是红色节点,如:第2行代码),不需要进行红黑树调整。原因:经过父节点的所有路径中,黑色节点数没有变化,且父黑子红,符合红黑树定义。
    3. 为什么是while循环?且每次循环过后,x变成了父节点。具体原因,后续再做详细分析
  3. 第5~21行代码:新插入节点x的父节点是左子树时,红黑树的修复过程
    1. 第6行代码:取x节点的叔叔节点
    2. 第7行代码:判断叔叔节点是否为红色
      1. 第8~11行:见如下表格1的第一种情况
      2. 第13~19行:见表格1的第二种情况
  4. 第21~37行代码:新插入节点x的父节点是右子树时,红黑树的修复过程
    1. 第22行代码:去x节点的叔叔节点
    2. 第7行代码:判断叔叔节点是否为红色
      1. 第24~27行:见如下表格的第三种情况
      2. 第29~35行:见如下表格第四种情况

红黑树每种情况调整表格1:

场景红黑树调整前红黑树调整后调整口诀
情况1,对应代码第8~11行

1、父、叔变黑,爷爷变红

2、调整节点x指向爷爷,重新进行红黑树调整

情况2,对应代码第13~19行第13~16行,红黑树如下:

1、父左旋后,如图:

2、x赋值为父节点,重新循环调整红黑树

3、自己变黑,爷爷变红

4、爷爷右旋

第17~20行,红黑树如下:

1、爷爷右旋

2、父和爷爷变色

情况3,对应第24~27行代码

1、父、叔变黑,爷爷变红

2、调整节点x指向爷爷,重新进行红黑树调整

情况3,对应第29~35行代码

第14~27行代码:红黑树如下:

1、父左旋

2、x赋值为父节点,重新循环调整红黑树

3、父变黑,爷爷变红

4、爷爷右旋

第29~35行代码:红黑树如下:

1、父变黑,爷爷变红

2、爷爷右旋

继续分析一下:第4、11、14、27、30行代码

  1. 第4行代码:循环判断x节点是否需要进行红黑树调整
  2. 第11行代码:x赋值为爷爷节点,继续进行红黑树调整。原因:爷爷节点的父节点如果是红色,那么第一种情况的红黑树调整后,爷爷是红黑,爷爷的父节点红色,不符合红黑树定义,因此需要再次以爷爷节点为插入节点,继续红黑树调整
  3. 第14行代码:x指向父节点,左旋后变成左子树的叶子节点。叶子节点为红色,通过17行代码之后,父节点必定是黑色,下次通过第4行代码循环判断时,不符合条件退出循环
  4. 第27行代码:与第11行代码同理
  5. 第30行代码:x指向父节点,右旋后变成右子树的叶子节点。叶子节点为红色,通过33行代码之后,父节点必定是黑色,下次通过第4行代码循环判断时,不符合条件退出循环

继续深入分析二叉树的左右旋转:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值