一、内部结构
1、TreeMap的成员变量
/**
* key的比较器
*/
private final Comparator<? super K> comparator;
/**
* 红黑树的根节点
*/
private transient Entry<K,V> root;
/**
* 树形结构的大小
*/
private transient int size = 0;
/**
* 树形结构修改次数
*/
private transient int modCount = 0;
2、红黑树节点Entry结构:
K key;
V value;
Entry<K,V> left;
Entry<K,V> right;
Entry<K,V> parent;
boolean color = BLACK;
3、红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色。
红黑树特性:
性质1. 节点是红色或黑色
性质2. 根节点是黑色 (非根节点,默认红色)
性质3.所有叶子都是黑色。(叶子是NIL节点)
性质4. 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
性质5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点
二、源码分析(下面的源码都是以jdk8为例)
1、put方法分析
- 跟节点为空时,初始化root节点
- 找到待插入节点的父节点。
- 调用fixAfterInsertion方法,修复插入后的结果,使插入后仍然是红黑树
public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
fixAfterInsertion方法的源码如下:
private void fixAfterInsertion(Entry<K,V> x) {
x.color = RED;
while (x != null && x != root && x.parent.color == RED) {
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
Entry<K,V> y = rightOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == rightOf(parentOf(x))) {
x = parentOf(x);
rotateLeft(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateRight(parentOf(parentOf(x)));
}
} else {
Entry<K,V> y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == leftOf(parentOf(x))) {
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateLeft(parentOf(parentOf(x)));
}
}
}
root.color = BLACK;
}
fixAfterInsertion是红黑树的核心方法,分为如下几种情况:
- 第2行代码:默认新插入的节点为红色
- 第4行代码:
- 父节点是红色时,则执行第5~38行代码,需要做红黑树的调整。原因:父节点红色,子节点红色,不符合红黑树定义。
- 父节点是黑色时,新插入节点(默认新插入是红色节点,如:第2行代码),不需要进行红黑树调整。原因:经过父节点的所有路径中,黑色节点数没有变化,且父黑子红,符合红黑树定义。
- 为什么是while循环?且每次循环过后,x变成了父节点。具体原因,后续再做详细分析
- 第5~21行代码:新插入节点x的父节点是左子树时,红黑树的修复过程
- 第6行代码:取x节点的叔叔节点
- 第7行代码:判断叔叔节点是否为红色
- 第8~11行:见如下表格1的第一种情况
- 第13~19行:见表格1的第二种情况
- 第21~37行代码:新插入节点x的父节点是右子树时,红黑树的修复过程
- 第22行代码:去x节点的叔叔节点
- 第7行代码:判断叔叔节点是否为红色
- 第24~27行:见如下表格的第三种情况
- 第29~35行:见如下表格第四种情况
红黑树每种情况调整表格1:
场景 | 红黑树调整前 | 红黑树调整后 | 调整口诀 |
情况1,对应代码第8~11行 | 1、父、叔变黑,爷爷变红 2、调整节点x指向爷爷,重新进行红黑树调整。 | ||
情况2,对应代码第13~19行 | 第13~16行,红黑树如下: | 1、父左旋后,如图: 2、x赋值为父节点,重新循环调整红黑树 3、自己变黑,爷爷变红 4、爷爷右旋 | |
第17~20行,红黑树如下: | 1、爷爷右旋 2、父和爷爷变色 | ||
情况3,对应第24~27行代码 | 1、父、叔变黑,爷爷变红 2、调整节点x指向爷爷,重新进行红黑树调整。 | ||
情况3,对应第29~35行代码 | 第14~27行代码:红黑树如下: | 1、父左旋 2、x赋值为父节点,重新循环调整红黑树 3、父变黑,爷爷变红 4、爷爷右旋 | |
第29~35行代码:红黑树如下: | 1、父变黑,爷爷变红 2、爷爷右旋 |
继续分析一下:第4、11、14、27、30行代码
- 第4行代码:循环判断x节点是否需要进行红黑树调整
- 第11行代码:x赋值为爷爷节点,继续进行红黑树调整。原因:爷爷节点的父节点如果是红色,那么第一种情况的红黑树调整后,爷爷是红黑,爷爷的父节点红色,不符合红黑树定义,因此需要再次以爷爷节点为插入节点,继续红黑树调整
- 第14行代码:x指向父节点,左旋后变成左子树的叶子节点。叶子节点为红色,通过17行代码之后,父节点必定是黑色,下次通过第4行代码循环判断时,不符合条件退出循环
- 第27行代码:与第11行代码同理
- 第30行代码:x指向父节点,右旋后变成右子树的叶子节点。叶子节点为红色,通过33行代码之后,父节点必定是黑色,下次通过第4行代码循环判断时,不符合条件退出循环
继续深入分析二叉树的左右旋转: