Leetcode 1340:跳跃游戏V(超详细的解法!!!)

这道题目要求你在给定的整数数组中,根据特定的跳跃规则计算最多能访问多少个下标。可以使用记忆化搜索或贪心策略(配合单调栈)来解决。文章提供了详细的解题思路,并给出了Python解决方案。还包含了问题的链接和GitHub上的相关代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个整数数组 arr 和一个整数 d 。每一步你可以从下标 i 跳到:

  • i + x ,其中 i + x < arr.length0 < x <= d
  • i - x ,其中 i - x >= 00 < x <= d

除此以外,你从下标 i 跳到下标 j 需要满足:arr[i] > arr[j]arr[i] > arr[k] ,其中下标 k 是所有 ij 之间的数字(更正式的,min(i, j) < k < max(i, j))。

你可以选择数组的任意下标开始跳跃。请你返回你 最多 可以访问多少个下标。

请注意,任何时刻你都不能跳到数组的外面。

示例 1:

输入:arr = [6,4,14,6,8,13,9,7,10,6,12], d = 2
输出:4
解释:你可以从下标 10 出发,然后如上图依次经过 10 --> 8 --> 6 --> 7 。
注意,如果你从下标 6 开始,你只能跳到下标 7 处。你不能跳到下标 5 处因为 13 > 9 。你也不能跳到下标 4 处,因为下标 5 在下标 4 和 6 之间且 13 > 9 。
类似的,你不能从下标 3 处跳到下标 2 或者下标 1 处。

示例 2:

输入:arr = [3,3,3,3,3], d = 3
输出:1
解释:你可以从任意下标处开始且你永远无法跳到任何其他坐标。

示例 3:

输入:arr = [7,6,5,4,3,2,1], d = 1
输出:7
解释:从下标 0 处开始,你可以按照数值从大到小,访问所有的下标。

示例 4:

输入:arr = [7,1,7,1,7,1], d = 2
输出:2

示例 5:

输入:arr = [66], d = 1
输出:1

提示:

  • 1 <= arr.length <= 1000
  • 1 <= arr[i] <= 10^5
  • 1 <= d <= arr.length

解题思路

比较容易想到记忆化搜索的方法来解,可以定义函数 f ( u ) f(u) f(u)表示从 u ∈ [ 0 , n ) u\in [0,n) u[0,n)开始跳的最多步数。那么

  • f ( u ) = m a x i = u + 1 u + d f ( i ) + 1 f(u)=max_{i=u+1}^{u+d}f(i)+1 f(u)=maxi=u+1u+df(i)+1

需要注意的是,其中 0 ≤ i < n 0 \leq i <n 0i<n并且 a r r [ u + 1 ] . . a r r [ i ] < a r r [ u ] arr[u+1]..arr[i] <arr[u] arr[u+1]..arr[i]<arr[u]。另外,相反方向同理。

from functools import lru_cache
class Solution:
    def maxJumps(self, arr: List[int], d: int) -> int:
        n = len(arr)
        
        @lru_cache(None)
        def dfs(u):
            res = 1
            for k in [-1, 1]:
                for i in range(u + k, u + (d + 1) * k, k):
                    if not (0 <= i < n and arr[i] < arr[u]):
                        break
                    res = max(res, dfs(i) + 1)
            return res
        return max(map(dfs, range(n)))

如果我们反过来思考,也就是从低处向高处跳,这样就可以采用贪心的策略,每次跳最近的大于当前位置的地方。而最近的大于当前位置的地方,可以通过单调栈来求解。

from functools import lru_cache
class Solution:
    def maxJumps(self, arr: List[int], d: int) -> int:
        n = len(arr)
        s, lb, rb = [], [-1] * n, [-1] * n
        for i, v in enumerate(arr):
            while s and s[0] < i - d:
                s.pop(0)
            while s and arr[s[-1]] <= v:
                s.pop()
            if s:
                lb[i] = s[-1]
            s.append(i)
        
        s = []
        for i, v in enumerate(arr):
            while s and s[0] < i - d:
                s.pop(0)
            while s and arr[s[-1]] < v:
                rb[s.pop()] = i
            s.append(i)
        
        @lru_cache(None)
        def dfs(u):
            res = 1
            if lb[u] >= 0:
                res = max(res, dfs(lb[u]) + 1)
            if rb[u] >= 0:
                res = max(res, dfs(rb[u]) + 1)
            return res
        return max(map(dfs, range(n)))

由于我们采用贪心策略(从低向高跳),所以我们通过动态规划来解这个问题的时候,需要先对arr排序。

class Solution:
    def maxJumps(self, arr: List[int], d: int) -> int:
        n = len(arr)
        def findBigger(nums):
            s, res = [], [-1] * n
            for i, v in enumerate(nums):
                while s and s[0] < i - d:
                    s.pop(0)
                while s and nums[s[-1]] < v:
                    res[s.pop()] = i
                s.append(i)
            return res
        
        rb = findBigger(arr)
        lb = [n - i - 1 if i != -1 else -1 for i in findBigger(arr[::-1])[::-1]]
        
        dp, res = [1] * n, 0
        for _, i in sorted([v, i] for i, v in enumerate(arr))[::-1]:
            if lb[i] >= 0:
                dp[i] = max(dp[i], dp[lb[i]] + 1)
            if rb[i] >= 0:
                dp[i] = max(dp[i], dp[rb[i]] + 1)
            res = max(res, dp[i])
        return res

reference:

https://leetcode.com/problems/jump-game-v/discuss/496620/Python-Different-DP-Solutions

我将该问题的其他语言版本添加到了我的GitHub Leetcode

如有问题,希望大家指出!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值