给你一个整数数组 arr
和一个整数 d
。每一步你可以从下标 i
跳到:
i + x
,其中i + x < arr.length
且0 < x <= d
。i - x
,其中i - x >= 0
且0 < x <= d
。
除此以外,你从下标 i
跳到下标 j
需要满足:arr[i] > arr[j]
且 arr[i] > arr[k]
,其中下标 k
是所有 i
到 j
之间的数字(更正式的,min(i, j) < k < max(i, j)
)。
你可以选择数组的任意下标开始跳跃。请你返回你 最多 可以访问多少个下标。
请注意,任何时刻你都不能跳到数组的外面。
示例 1:

输入:arr = [6,4,14,6,8,13,9,7,10,6,12], d = 2
输出:4
解释:你可以从下标 10 出发,然后如上图依次经过 10 --> 8 --> 6 --> 7 。
注意,如果你从下标 6 开始,你只能跳到下标 7 处。你不能跳到下标 5 处因为 13 > 9 。你也不能跳到下标 4 处,因为下标 5 在下标 4 和 6 之间且 13 > 9 。
类似的,你不能从下标 3 处跳到下标 2 或者下标 1 处。
示例 2:
输入:arr = [3,3,3,3,3], d = 3
输出:1
解释:你可以从任意下标处开始且你永远无法跳到任何其他坐标。
示例 3:
输入:arr = [7,6,5,4,3,2,1], d = 1
输出:7
解释:从下标 0 处开始,你可以按照数值从大到小,访问所有的下标。
示例 4:
输入:arr = [7,1,7,1,7,1], d = 2
输出:2
示例 5:
输入:arr = [66], d = 1
输出:1
提示:
1 <= arr.length <= 1000
1 <= arr[i] <= 10^5
1 <= d <= arr.length
解题思路
比较容易想到记忆化搜索的方法来解,可以定义函数 f ( u ) f(u) f(u)表示从 u ∈ [ 0 , n ) u\in [0,n) u∈[0,n)开始跳的最多步数。那么
- f ( u ) = m a x i = u + 1 u + d f ( i ) + 1 f(u)=max_{i=u+1}^{u+d}f(i)+1 f(u)=maxi=u+1u+df(i)+1
需要注意的是,其中 0 ≤ i < n 0 \leq i <n 0≤i<n并且 a r r [ u + 1 ] . . a r r [ i ] < a r r [ u ] arr[u+1]..arr[i] <arr[u] arr[u+1]..arr[i]<arr[u]。另外,相反方向同理。
from functools import lru_cache
class Solution:
def maxJumps(self, arr: List[int], d: int) -> int:
n = len(arr)
@lru_cache(None)
def dfs(u):
res = 1
for k in [-1, 1]:
for i in range(u + k, u + (d + 1) * k, k):
if not (0 <= i < n and arr[i] < arr[u]):
break
res = max(res, dfs(i) + 1)
return res
return max(map(dfs, range(n)))
如果我们反过来思考,也就是从低处向高处跳,这样就可以采用贪心的策略,每次跳最近的大于当前位置的地方。而最近的大于当前位置的地方,可以通过单调栈来求解。
from functools import lru_cache
class Solution:
def maxJumps(self, arr: List[int], d: int) -> int:
n = len(arr)
s, lb, rb = [], [-1] * n, [-1] * n
for i, v in enumerate(arr):
while s and s[0] < i - d:
s.pop(0)
while s and arr[s[-1]] <= v:
s.pop()
if s:
lb[i] = s[-1]
s.append(i)
s = []
for i, v in enumerate(arr):
while s and s[0] < i - d:
s.pop(0)
while s and arr[s[-1]] < v:
rb[s.pop()] = i
s.append(i)
@lru_cache(None)
def dfs(u):
res = 1
if lb[u] >= 0:
res = max(res, dfs(lb[u]) + 1)
if rb[u] >= 0:
res = max(res, dfs(rb[u]) + 1)
return res
return max(map(dfs, range(n)))
由于我们采用贪心策略(从低向高跳),所以我们通过动态规划来解这个问题的时候,需要先对arr
排序。
class Solution:
def maxJumps(self, arr: List[int], d: int) -> int:
n = len(arr)
def findBigger(nums):
s, res = [], [-1] * n
for i, v in enumerate(nums):
while s and s[0] < i - d:
s.pop(0)
while s and nums[s[-1]] < v:
res[s.pop()] = i
s.append(i)
return res
rb = findBigger(arr)
lb = [n - i - 1 if i != -1 else -1 for i in findBigger(arr[::-1])[::-1]]
dp, res = [1] * n, 0
for _, i in sorted([v, i] for i, v in enumerate(arr))[::-1]:
if lb[i] >= 0:
dp[i] = max(dp[i], dp[lb[i]] + 1)
if rb[i] >= 0:
dp[i] = max(dp[i], dp[rb[i]] + 1)
res = max(res, dp[i])
return res
reference:
https://leetcode.com/problems/jump-game-v/discuss/496620/Python-Different-DP-Solutions
我将该问题的其他语言版本添加到了我的GitHub Leetcode
如有问题,希望大家指出!!!