给定二叉搜索树的根结点 root
,返回 L
和 R
(含)之间的所有结点的值的和。
二叉搜索树保证具有唯一的值。
示例 1:
输入:root = [10,5,15,3,7,null,18], L = 7, R = 15
输出:32
示例 2:
输入:root = [10,5,15,3,7,13,18,1,null,6], L = 6, R = 10
输出:23
提示:
- 树中的结点数量最多为
10000
个。 - 最终的答案保证小于
2^31
。
解题思路
这个问题非常简单。我们首先想到的做法就是,先通过中序遍历得到中序遍历数组,然后遍历这个数组得到L
和R
的位置,然后计算这两个位置中所有元素的和即可。
想要如何写出优雅的中序遍历,看这篇文章Leetcode 94:二叉树的中序遍历(最优雅的解法!!!)
class Solution:
def rangeSumBST(self, root, L, R):
"""
:type root: TreeNode
:type L: int
:type R: int
:rtype: int
"""
tmp,result = list(), 0
self.inorder(root, tmp)
left, right = 0, 0
for i, val in enumerate(tmp):
if val == L:
left = i
if val == R:
right = i
break
return sum(tmp[left:right+1])
def inorder(self, root, result):
if root:
self.inorder(root.left, result)
result.append(root.val)
self.inorder(root.right, result)
另一种非常简单的思路就直接遍历整棵二叉树,然后对L <= val <= R
的元素做加法。我们这里使用迭代版本的前序遍历。
想要如何写出优雅的前序遍历,看这篇文章Leetcode 144:二叉树的前序遍历(最优雅的解法!!!)
class Solution:
def rangeSumBST(self, root, L, R):
"""
:type root: TreeNode
:type L: int
:type R: int
:rtype: int
"""
result, stack = 0, [root]
while stack:
node = stack.pop()
if node:
if L <= node.val <= R:
result += node.val
if node.val < R:
stack.append(node.right)
if L < node.val:
stack.append(node.left)
return result
还有一种比较简洁的思路就是直接使用递归。我们要知道以root
为根区间在[L,R]
的和,我们只需要知道以root.left
为根区间在[L,root.val-1]
这个区间的元素和加上以root.right
为根区间在[root.val+1,R]
这个区间的元素和再加上root.val
即可。也就是将[L,R]
拆借为[L,root.val-1]
、[root.val]
和[root.val+1, R]
三个区间。
class Solution:
def rangeSumBST(self, root, L, R):
"""
:type root: TreeNode
:type L: int
:type R: int
:rtype: int
"""
if not root or L > R:
return 0
if root.val < L:
return self.rangeSumBST(root.right, L, R)
if root.val > R:
return self.rangeSumBST(root.left, L, R)
return root.val + self.rangeSumBST(root.left, L, root.val - 1)+\
self.rangeSumBST(root.right, root.val + 1, R)
我将该问题的其他语言版本添加到了我的GitHub Leetcode
如有问题,希望大家指出!!!