[解题报告]《算法零基础100讲》(第48讲) 位运算 (左移)

请添加图片描述

☘前言☘

今天是算法零基础打卡的第47天,题目有点难度,给大家亿点点参考。上链接:
《算法零基础100讲》(第47讲) 位运算 (异或) 进阶

🧑🏻作者简介:一个从工业设计改行学嵌入式的年轻人
✨联系方式:2201891280(QQ)
全文大约阅读时间: 20min



🎁主要知识点

左移运算

1.左移的定义

左移运算是一个二元运算符x<<y,其中x和y都是整数,读作“x左移y位"。
( . . . 100000 ) 2 ⇒ ( 100000 00...0 ⏟ y ) 2 \left (...100000 \right )_2\Rightarrow \left (100000\underbrace{00...0}_{y} \right )_2 (...100000)2(100000y 00...0)2
可以看到就是在低位补0

2.左移的执行结果

x ≪ y 的 执 行 结 果 等 价 于 x × 2 y \bold x \bold \ll\bold y 的执行结果等价于 x \times 2^y xyx×2y

#include <stdio.h>
int main() {
   int x = 3;
   int y = 5;
   printf("%d\n", x << y);
   return 0;
}

执 行 结 果 等 价 于 3 × 2 5 = 96 符 合 结 论 执行结果等价于 3 \times 2^5 = 96符合结论 3×25=96
最常用的方式是1<<y来生成2的幂

3.负数的执行结果

当x为负数的时候
( 11111111111111111111111111111111 ) 2 ⇒ ( 11111111111111111111111111111110 ) 2 \left( 11111111 11111111 11111111 11111111 \right)_2\Rightarrow\left( 11111111 11111111 11111111 11111110 \right)_2 (11111111111111111111111111111111)2(11111111111111111111111111111110)2
也是同样的运算规律

4.左移负数的执行结果

与右移的效果是一样的

5.左移溢出的结果

会产生同余效果 int的最大长度是2^32

左移运算的亿些运用

1.取模运算

x m o d y ⇒ x & ( ( 1 ≪ y ) − 1 ) x \quad mod\quad y\Rightarrow x \quad \& \quad ((1\ll y) - 1) xmodyx&((1y)1)

2.作为标记码

1<<y可以对第y位进行操作
需要与位与位或 位异或和取反结合0.0


📓课后习题

190. 颠倒二进制位

190. 颠倒二进制位

颠倒给定的 32 位无符号整数的二进制位。
提示:

  • 请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
  • 在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在 示例 2 中,输入表示有符号整数 -3,输出表示有符号整数 -1073741825。

解题思路

有几个需要确认的点

  1. 如果两个位置元素相同 不需要修改
  2. 如果两个位置元素不同 两者取反就好了
bool getbit(uint32_t n,int k){
    return n & ((uint32_t)1<<k);
}
uint32_t reverseBits(uint32_t n) {
    for(int i = 0; i < 16; ++i)
        if(getbit(n,i) != getbit(n, 31-i)){//不同才修改
            n ^= (uint32_t)1 << i;		//第i位取反
            n ^= (uint32_t)1 << 31 - i;	//第32-i位取反
        }
    return n;
}

231. 2 的幂

231. 2 的幂

给你一个整数 n,请你判断该整数是否是 2 的幂次方。如果是,返回true ;否则,返回false
如果存在一个整数x使得n == 2x ,则认为 n是 2 的幂次方。

解题思路

如果一个数字是2的幂 那么这个数字二进制只有一个1 其余为0 并且 x & (x-1) = 0

bool isPowerOfTwo(int n){
    return n <=0 ? false : !(n &(n-1));//一行搞定?
}

476. 数字的补数

476. 数字的补数

对整数的二进制表示取反(0 变 1 ,1 变 0)后,再转换为十进制表示,可以得到这个整数的补数。

  • 例如,整数 5 的二进制表示是"101" ,取反后得到"010" ,再转回十进制表示得到补数 2 。

给你一个整数num ,输出它的补数。

解题思路

依次判断把每一位取反就好了,用num>>i做判断跳出循环。

int findComplement(int num){
    for(int i = 0;num >> i;i++)
        num = num ^ (1 << i);
    return num;
}

338. 比特位计数

338. 比特位计数

给你一个整数 n ,对于 0 <= i <= n 中的每个 i ,计算其二进制表示中 1 的个数 ,返回一个长度为 n + 1的数组ans 作为答案。

解题思路

依次计算插入结果就好了

int* countBits(int n, int* returnSize){
    *returnSize = n + 1;
    int *ans = malloc(sizeof(int) * (n + 1)),size= 0;
    for(int i = 0;i <= n;i++){
        int temp = i,count = 0;
        while(temp){
            if(temp & 1) count++;	//看最低位是否为1
            temp >>= 1; 	//右移一位
        }
        ans[size++] = count;
    }
    return ans;
}

📑写在最后

考完试了,来补坑,今天写了足足四篇题解,,,,真的累。今天考完分布式了,就剩周五的模集让我头秃了,洗澡睡觉,明日再战0.0

  • 10
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XingleiGao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值